University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Embedded Systems Laboratory 0907334

O llll.ll Yl
-

Objectives

The main objectives of this experiment are to familiarize you with:

0

¢ Microchip MPLAB Integrated Development Environment (IDE) and the whole process of building a
project, writing simple codes, and compiling the project.

Code simulation

QL200 development kit

QL-PROG software and learn how to program the PIC using it

Starting MPLAB
After installation, shortcut of this software will appear on desktop.
Create asm file using MPLAB

a) Double click on the “MPLAB” program icon found on the desktop.

Note: All programs written, simulated and debugged in MPLAB should be stored in files with .asm
extension.

b) To create asm, follow these simple

i FlleeNEW File Edit View Project Debugger Programmer Tools Configure Window Help
. . . N Ctrl+N o
ii. File > Save as, in the save = : r ? Checksum: 0xfet ‘
Add Mew File to Project...

dialog box; name the file as Open.. Ctle0

“myFirstFile.asm” WITHOUT Close Ctrl+E

THE DOUBLE QUATATIONS Save Ctrl+5

MARKS, this will instruct Save As...

MPLAB to save the file in .asm save Al Crieshifs

format.

W~ -
Savein: || Expermert 0 -2 o

-~

Date modified Type Siz

Mame

Mo items match your search,

<

[T | 3
A
File name: mmyFirst File asm Save

Save as type: [.NI Source Files ("c;”h;"asm;" as;"inc.” 5" bas) v] ’ Cancel]
Jump to; [D:\334 Embadded Lab\OL 200 MEW\MNew_esperimentienas_3% V]
Encoding: AMSI -

[&dd File Ta Project

NOTE: All your files should be stored in a short path:

The total number of characters in a path should not exceed 64 Char No.
C:\orD:\ or ... 3 v
D:\Embedded\ 12 |V
D:\Embedded\Lab 15 |V
D:\Engineer\Year_Three\Summer_Semester\Embedded_Lab\Experiment_1\MyProgram.asm | 78 |
Any file on Desktop 5

Create a project in MPLAB by following these simple steps:

1. Select the Project — Project Wizard menu item — Next

File Edit View

Debugger Programmer

D d|]

B Output

Build I WVersion [

l Project Wizard...

Open...
Close
Set Active Project

Quickbuild {no .asm file)

Package in .zip
Clean

Build Configuration
Build Options...

Save Project
Save Project As..,
Add Files to Project,

Add Mew File to Project...
Remaowve File From Project

Select Language Toolsuite...
Set Language Tool Locations...

Yersion Control...

Tools Configure Window Help
| AN il J Checksum: 0Ox0fcf

PICIG6FETTA

2. Inthe device selection menu, choose 16F84A (or your target PIC) — Next

ICTEFE44,

3. Inthe Active Toolsuite, choose Microchip MPASM Toolsuite — Click next.

DO NOT CHANGE ANYTHING IN THIS SCREEN

Step Two:
Select a language toolsuite

e,

S5

EE}{@}

Active Toaolsuibe: [Micn:u:hip MPASKH Toolsuite)

)

Toolzuite Contents

RPASH Azzembler [mpazmmin exe] v5 30,01
MPLIMNE. Object Linker [mplink. exe] +4.30.01
MPLIE Librarian [mplb.exe)

Location

C:%Proaram FileshMicrochipsMPASM SuitelMPASMWwWIN . exe

Store tool locations in project

| Help! My Suite lsnit Listed! |

Browsze. ..

Shaow all installed toalsui

tes

(b)]

[Cancsl | [Heb |

4. Browse to the directory where you saved your ASM file. Give your project a name — Save — Next.

Step Three:
Create a new project, or recorfigure the active project?

e

(@ Create New Project File

Reconfigure Active Project
Make changes without zaving

Save changes to exizting project file

Save changes to another project file

Browsze...

‘ | Browsze. .

5. If, in Step 4, you navigated correctly to your file destination you should see it in the left pane
otherwise choose back and browse to the correct path. When done Click add your file to the project
(here: myFirstFile.asm). Make sure that the letter A is beside your file and not any other letter —
Click next —Click Finish.

Project Wizard

Step Four:
Add existing files to your project

=1 Embedded —
P riyFirstFile. azm

& ubuntu

@ F:

A\ EMEmbeddedymyFirstFile. asm

4 Ll I

6. You should see your ASM file under Source file, now you are ready to begin
Double click on the myFirstFile.asm file in the project file tree to open. This is where you will write
your programs, debug and simulate them.

W myProject - MPLAB IDE v8.30 - myProject.mow W myProject - MPLAB IDE v8.30

File Edit WView Project Debugger Programr File Edit View Project Debugger Progran
O = - 0O = r
7| myProject. mew fo | S]] & myProject.mew = ===

EII:' myProject.mcp =1 myProject.mcp*
'-:-'D Seurcefiles | B] L (1 Source Files
e myFirstFile.asm | e (2] Header Files
----- (1 Header Files . '
e e (1 Object Files
----- 3 Ohject Files . ;
, I I D | N 3 Library Files
----- 3 Library Files |:|))
..... [Linker Script i Linker ST:ru:ut
----- (L1 Other Files EII:' Other Files
E myFirstF'
CORRECT WRONG

Now we will simulate a program in MPLAB and check the results
In MPLAB write the following program:

Movlw 5 ; move the constant 5 to the working register

Movwf 01 ; copy the value 5 from working register to TMRO (address 01)
Movlw 2 ; move the constant 2 to the working register

Movwf 0B ; copy the value 2 from working register to INTCON (address 0B)
Movf 01,0 ; copy back the value 5 from TMRO to working register

Nop ; this instruction does nothing, but it is important to write for now
End ; every program must have an END statement

After writing the above instructions we should build the project, do so by pressing build
myProject - MPLAR IDE v8.30

File Edit View Project Debugger Programmer Tools Configure Window Help

D& | B S éw ? [Debug - HBa@® & @a

r)

B e .
A.] myProj # | E\Embedded\myFirstFile.asm*
EID y B Movlw 5 jmove the constant 5 to the working
=-E3 MowwE 01 jcopy the value 5 from working regilst
Movlw 2 jmove the constant 2 to the working
..... E3 Movwi 0B ;copy the walue 2 from working regist
..... 3 Movf 01, 0O ;jcopy back the walue 5 from TMERO to
..... &3 Nop sthie dpetouction dose potbing but
..... E3 End Absolute or Rela-catable?‘ ﬁ =tal
..... 3

Do you want thiz project to generate abzaluke or relocatable code?
[v'ou can change this later in the Build Options dialog on the “Suite' tab.]

8 ! r=
. Click Absolute - -1 2 Abzolute] [Relacatable]
1

o =8 e

Build | Wersion Control | Find in Files | MPLAE SiM |

ing: "CAFProgram Files\Microchip\tFASM Suite\tMPASKMWIN exe" /g /p1BFE4A "myFirstFI_"
arningf203] EAEMBEDDEDYWAYFIRSTFILE.ASM 1 «Eound opcode in colurmn To{hovha)
YWarning[E03]) EAEMEBEDDEDWYFIRSTFILE.ASM 2 : Found opcode incolumn 1. (b o)

(403] (
Warning[d03]) EAEMEBEDDEDWYFIRSTFILE ASKM 3 : Found opcode in column 1. (Mowba)
Warning[203] EAEMBEDDEDWYFIRSTFILE ASKM 4 : Found opcode in column 1. (Mo
(403] [
] (

W'arning EAEMBEDDEDWMYFIRSTFILE.ASM 5 Found opcode in column 1. (Mo
Wharning[203]) EAEMBEDDEDWYFIRSTFILEASM B : Found opoode in colurn 1. (Mop)
arning{205] EAEMBEDDEDYWAYFIRSTFILE. ASM 7 : Found directive in column 1. (End)
E ng: "CAProgram Files\MicrochiphMPASK Suitemplink.exe" /p16F84A "myFirstFile.o™ u_—
An output window should HMPLINE 4.30.01, Linker

Copyright (c) 2009 Microchip Technology Inc.
show: Errors 0

[

BUILD SUCCEDDED Loaded E\Embeddedymy FirsiFile.cot

L1

|

Debug build of project "EAEmbeddedymyFroject mep' succeeded.
Languacge toalversions: MPASMWIN. exe b 30.01, mplink exe vw4.30.01
Preprocessor symbol __DEBUG' is defined.

bon Jun 15131851 2009

BUILD SUCCEEDED L

4| m | 3

QL-PROG - How to Program

Prepared by Eng. Enas Jaara

After installation, shortcut of this software will appear on desktop.

1. Connect hardware and power up the Kit, run the programming software QL-PROG (Double
click it to run the software) which will automatically search programmer hardware. It will

appear as shown in the below diagram

File Program Option Help
. E = ‘Qéﬁ & _! ::: ‘*;ugn_ Part Selector Chip Family Chip Select
Load| Save| Edit | Eras|BlanK prog| verj| Read | [COM3 | |1 Chip ~| |16i877a ~|
———— DROM DATAE ———— -~ Program O ptiors
0000: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 2.7.2.2.7.7.2.%7. [[Blank v Eraze
0002: 3FFF 3FFF 3FFF 3FFF 3IFFF 3FFF 2FFF 3FFF 7.7.72.7.7.2.7.7. [w Program And Yerify EEFROM
0010: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.%7.7. W Program And Yerify RO
0018: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.%7.7. W Wiite finish again verify onee
0020: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.%7.7. W Program And Verify FUSE/AD
0028: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.%7.7.
0030: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.%7.7. Frogram | |
0038: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.7.7.
0040: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.7.7.
0048: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.7.7. Calc Checksum
0050: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.7.7.
0058: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 2.7.2.2.7.2_2.7. Checksum D<FFFF
| 0060: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 2.2.2.2.7.2.2.7. Configuration t4/ord
00&8: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.7.7. O0x3FFF
|| | 0070: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 7.7.7.7.7.7.7.7.
|| | 90782 SFEF SFFF 3FFF SFEF 3FFF 3FFE SFEF 3FFF 2.2.2.2.2.2.2.7. User ID O4FFFFFFFFE
0080: 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 3FFF 2.7.2.7.7.2.7.7. _
COmMa QL200: aready connect Ready
Statistics: Target:9993
i Paze:0000
Load Save Fuses Program | Reset Pzet Fail- 0000
DianLungsH!ng Copyright: Shenzhen Oianlongsheng WEB:www. picB.com wenw cxgmou. com E -mail:pic1 BEipic B.com
Tip: “When programmer is abnormal,zelect menu [Option]-> [0 ownload operating System].mosr of problems can be solved,
=

2. Select Chip Family and Chip model
Choose All Chip from the chip family and choose 16F877A from the chip select

Chip Family

5

hip Select

Al C

3. Press Erase button on programming software panel to Erase the chip data

hip

v| 168773

4. Load File to Program

Press “Load” button on programming software panel to load machine code file (HEX file) of the

=]

hip you desire to program. load the LCD1.hex found on D:\Experiment0

Load| Save

Edit

2

i

£

Eras|Blank proq 1|.r't=.r'i

Part Selector

Sy

Chip Family

Read

COM4D =]

|l Chip

| |16E77a

5. Set Configuration Bit

You may set or change the configuration bit of chip by running pressing “Fuses” button on
software panel. After running the command software, pop-up window to set configuration bit will
appear as shown in below diagram. Set the options according to your requirement and click “OK”

button.

WDT |OFF PwWHRTE |OFF
BODEM |OFF LvP |OFF
Code Protect EEP |Dizabled FLASH ‘wiite Protect wRT_HalF
Debug |OFF Ozcillator |5
Code Pratect IDisabIed

Ledlefledlel

Ll lLeie

D IFFFFFFFF ak. | Cancel | Help |

If any of the above option differs, it is because you have chosen the wrong PIC, so go to chip select

and choose your appropriate PIC.
6. Program the PIC
Press "Program" button to begin programming. After completion, there will be messages of

"Programming comp -

r u = éﬂl £ ::: *iu, || Part Selectar I:hi|:u.FamiI_l,I Chip Select
Load| Save| Edit | Eras|Blank prog| veri| Read | |COM40 =] | |alChip | [166E77a -]

r
Information u

Proegrarnming complete,

OK

University of Jordan
School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Experiment 1: MPLAB and Instruction

Set Analysis 1

,..-' — A
0 . EmcniT Jor 00000 - mm——m

Objectives

The main objectives of this experiment are to familiarize you with:
+ The MOV instructions
Writing simple codes, compiling the project and Code simulation
The concept of bank switching
The MPASM directives
Microcontroller Flags

Arithmetic and logical operations
Pre-lab requirements

Before starting this experiment, you should have already acquired the MPLAB software and the related
PIC datasheets. You are required to install the MPLAB version that is available in the Lab.

Movement Instructions

You should know by now that most PIC instructions (logical and arithmetic) work through the Working
Register W; that is one of their operands must always be the Working Register W, while the other operand
might be either a constant or a memory location. Many operations store their result in the working register;
therefore, we usually need the following movement operations to perform arithmetic and logic instructions
between two values:

1. Moving constants to the working register (Loading)

2. Moving values from the data memory to the working register (Loading)

3. Moving values from the working register to the data memory (Storing)

NOTE: INSTRUCTIONS IN MPLAB ARE CASE INSENSITIVE; YOU CAN WRITE IN EITHER
SMALL OR CAPITAL LETTERS

« MOVLW: moves a literal (constant) to the working register (final destination). The constant is
specified by the instruction. You can directly load constants as decimal, binary, hexadecimal, octal
and ASCII. The following examples illustrate:

NOTE: The DEFAULT BASE in MPLAB IS HEXADECIMAL

Examples:
1. MOVLW 05 : moves the constant 5 to the working register
2. MOVLW 10 : moves the constant 16 to the working register.
3. MOVLW 0xAB : moves the constant ABp to the working register
4. MOVLW H'7F : moves the constant 7Fy to the working register
5. MOVLW CD : WRONG, if a hexadecimal number starts with a character, you
should write it as 0CD or 0xCD or H'CD’
6. MOVLW d'10’ : moves the decimal value 10 to the working register.
7. MOVLW .10 : moves the decimal value 10 to the working register.
8. MOVLWb’10011110’ : moves the binary value 10011110 to the working register.
9. MOVLW 0’76’ : moves the octal value 76 to the working register.
10. MOVLW A’g’ : moves the ASCII value g to the working register.

@

*» MOVWE: copies the value found in the working register into the data memory, but to which
location? The location is specified along with the instruction and according to the memory mabp.

So what is the memory map?
A memory map shows all available registers (in data memory) of a certain PIC along with their
addresses, it is organized as a table format and has two parts (as shown in the figure below):
1. Upper part: which lists all the Special Function Registers (SFR) in a PIC, these registers
normally have specific functions and are used to control the PIC operation
2. Lower part: which shows the General Purpose Registers (GPR) in a PIC; GPRs are data
memory locations that the user is free to use as he wishes.

Remember! Memory Maps of different PICs are different. Refer to the datasheets for the
appropriate data map

REGISTER FILE MAP -
PIC16F84A
File Address File Addrass
00h | Indirect addrt? | Indirect addr. | 20n
01h TMRD OPTION_REG 81h
02h PCL PCL 82h
03h STATUS STATUS 83h
04h FSR FSR B4h
05h PORTA TRISA B5h
D6h PORTB TRISB BBh
07h - — 87h
0&h EEDATA EECON1 BBh
0%h EEADR EEcomz(1) B8h
0Ah PCLATH PCLATH B8Ah
0Bh INTCON INTCON B8Bh
OCh 8Ch
63

General Mapped

Purpose {accesses)

Ragisters inBank 0

{SRAM)
4Fh CFh
50h Dioh

[T
TFh \ FFh
Bank 0 Bank 1
[J Unimplemented data memory location, read as 0.
MNote 1: Mot a physical register.

Examples:
1. MOVWF 01 - COPIES the value found in W to TMRO
MOVWEF 05-> COPIES the value found in W to PORTA
MOVWF 0C - COPIES the value found in W to a GPR (location 0C)
MOVWF 32 - COPIES the value found in W to a GPR (location 32)
MOVWF 52 - WRONG, out of data memory range of the PIC 16F84a (GPR range is from 0C-4F
and 8C to CF)

Ul W

«» MOVF: COPIES a value found in the data memory to the working register OR to itself. Therefore,
we expect a second operand to specify whether the destination is the working register or the
register itself. For now: a 0 means the W, a 1 means the register itself.

Examples:
1. MOVFO05,0 : copies the content of PORTA to the working register
2. MOVF 2D,0 :copies the content of the GPR 2D the working register
3. MOVF 05,1 : copies the content of PORTA to itself
4. MOVF 2D,1 :copies the content of the GPR 2D to itself

Writing and Compiling Programs

Now, let's try to use MPLAB to write a compile a simple program. In MPLAB write the following
program.

Movlw 5 ; move the constant 5 to the working register

Movwf 01 ; copy the value 5 from working register to TMRO (address 01)
Movlw 2 ; move the constant 2 to the working register

Movwf 0B ; copy the value 2 from working register to INTCON (address 0B)
Movf 01,0 ; copy back the value 5 from TMRO to working register

Nop ; this instruction does nothing, but it is important to write for now
End ; every program must have an END statement

After writing the above instructions we should build the project, do so by pressing Build button.

File Edit View Project Debugger Programmer Tools Configure Window Help

= B 3w ? [Debug - HBwO

= 9 b_4
2 myProie 5 EA\Embedded\myFirstFile.asm* /
=-21 my B Movlw 5 ;jmove the constant 5 to the working :
=23 MovwE 01 ;copy the value 5 from working regist
Mowlw 2 ;jmove the constant 2 to the working :
Movwi 0B ;copy the value 2 from working regist
Mowf 01, 0 ;copy back the walue 5 from TMRO to 1
Nop ;jthis instruction does nothing, but
.23 End ;Every Program must have and END stat
An output window should show: BUILD SUCCEDDED
2] Output [=llE]

Buid | Version Contral | Find in Files | MPLAB SIM |

cuting: "CAProgram Files\MicrochiphMPASM Suite\MPASMWIN. exa” /g /p16FE4A "myFirstF| «
arningf203] EANEMBEDDEDWAYFIRSTFILE ASM 1 :Eound opcode in column To(M o)
Waming[203] EAEMBEDDEDWYFIRSTFILE ASM £ : Found opcode in column 1. (Mowwd)

[403] (
Warning[203]) EAEMBEDDEDWAYFIRSTFILE ASM 3 : Found opcode in column 1. (Mol
Warning[2)3] EAEMBEDDEDWYFIRSTFILE.ASKM 4 : Found opcode in column 1. (Moww)
[303] i
] it

Warning[Z03] EAEMBEDDEDWAYFIRSTFILE ASM 5 : Found opcode in column 1. (Maowf)
Warning[f03] EAEMBEDDEDWYFIRSTFILE.ASKM B : Found opcode in column 1. (Mop)
arning]{205] EAEMBEDDEDWYFIRSTFILE. ASM 7 : Found directive in column 1. (End)
E: ng: "CAiProgram Files\MicrochiphMPASM Suiteymplink.exe" /p16FE4A "myFirstFile.o" fu_—
MPFLINE 4.30.01. Linker

Copyright {c) 2009 MHicrochip Technology Inc.
Errors]

Loadeld EAEmbeddedymyFirstFile.cof.

m

T

Debug build of project 'EAEmbeddedymyProject mep' succeeded.
Language tool versions: MPASMWIN. exe vh.30.01, mplink.exe vw4.30.01
Freprocessor symbol __DEBUG' is defined.

ton Jun 15 13:18:51 2009

BUILD SUCCEEDED L

4 I 2

Notes on building programs:

o Build succeeded does not mean that the logic of your program is correct. It means that there are
no SYNTAX errors.

e The warnings that you see do not affect the execution of the program but they are worth
reading. This warning reads: “Found opcode in column 1”, column 1 is reserved for labels;
however, we have written instructions (opcode) instead thus the warning. To solve this
warning, simply type few blank spaces before each instruction.

Preparing for Simulation

1. Go to View Menu — Watch

5\ ject - MPLAB IDE v8.30
o = e
File Edit [Vlew Project Debugger Programmer
] Add SFR| [2=EElE lv] Add Symbol
J) Y Projec ——EEADR
Update EECOMT | Symbol Name | Value
Output EECON2
1] myPro EEDATA
Toolbars L | FSR
IMDF
=RE : IMTCOM
Em[CPU Registers OPTION_REG
Call Stack PCL
PCLATH
Dizaszembly Listing FORTA,
PORTE
EEPROM STATUS
. TMRO
File Registers “atch 1 | swiatch 4
Flash Diata
Hardware Stack
LCD Pixel
(3 Files Locals
Memary
Program Memory
SFR / Peripherals
Special Function Registers
Watch
1 Memory Usage Gauge

2. From the drop out menu choose the registers we want to watch during simulation and click ADD
SFR for each one. Add the following registers: WREG, TMRO and INTCON. You should have the
following:

[=

| Watch o e s

&add SFR| THMRO | Add Symbal

T
Update Addres= Symbol Hame Value
THMRO 0=00

0B INTCON 0x00
WEREG 0x00

Watch 1 | wiatch 2 | Watch 3 | watch 4|

3. Notice that the default format is in hexadecimal, to change it (if you need to) simply right-click on
the row — Properties and choose the new format you wish.

.]
Watch U_J@ LX)
Watch Properties | Preferences I General

Symbol: THAD -
STT—

Format; | ;]

Byte Order: Binary
Decimal

ASCIH
Memary: MCHP Float

IEEE Float

Single Bit

[ok][cancel || apply Help

4. From the Debugger Menu — choose Select Tool — then MPLAB SIM

AB IDE v8.30 - Watch

Project | Debugger | Programmer Tools Configure Window Help

é Select Tool | ¥ Mone 5
Clear Memory L 1 MPLABICD 2
shEmbedded\myFirstFile.asm 2 PICkit 3

By Movlw 5 3 MPLAE 5IM 5t
MovwE 01 4 REALICE - oI

Movlw 2 5 MPLAB ICD 3 2 =

MowwE 0B Foory vano vaawe o =P OI

M n1ooon s et haek tha waloa 5

Now new buttons will appear in the toolbar as shown below.

b BFVER G

Step Into —J CReset

5. To begin the simulation, we will start by resetting the PIC; do so by pressing the yellow reset
button. A green arrow will appear next to the first instruction. The green arrow means that the
program counter is pointing to this instruction which has not been executed yet.

Notice the status bar below. Keep an eye on the value of the program counter (pc: initially 0),
see how it changes as we simulate the program:

1
MPLAE 5IM PIC16FE44 pcil Wi zdecc 20 MHz bank(

6. Press the “Step Into” button one at a time and check the Watch window each time an instruction
executes. Keep pressing “Step Into” until you reach the NOP instruction then STOP. Compare the
results as seen in the Watch window with those expected.

Directives

Directives are not instructions. They are assembler commands that appear in the source code but are
not usually translated directly into opcodes. They are used to control the assembler: its input, output,
and data allocation. They are not converted to machine code (.hex file) and therefore not downloaded to
the PIC.

s+ The “END” directive

If you refer to the Appendix at the end of this experiment, you will notice that there is no end
instruction among the PIC 16 series instructions, so what is “END”?

The “END” directive is a command which tells the MPLAB IDE that we have finished our program. It has
nothing to do with neither the actual program nor the PIC.

The END should always be the last statement in your program! Anything which is written after the end
command will not be executed and any variable names will be undefined.

+ The “EQU” Directive

As you have just noticed, it is difficult to write, read, debug or understand programs while dealing with
memory addresses as numbers. Therefore, we will learn to use new directives to facilitate program
reading.

The equate directive is used to assign labels to numeric values. They are used to DEFINE CONSTANTS or
to ASSIGN NAMES TO MEMORY ADDRESSES OR INDIVIDUAL BITS IN A REGISTER and then use the name
instead of the numeric address.

Timer0 equ 01

Intcon equ OB

Workrg equ0

Movlw 5 ; move the constant 5 to the working register

Movwf Timer0 ; copy the value 5 from working register to TMRO (address 01)
Movlw 2 ; move the constant 2 to the working register

Movwf Intcon ; copy the value 2 from working register to INTCON (address 0B)
Movf Timer0, Workrg ; copy back the value 5 from TMRO to working register

Nop ; this instruction does nothing, but it is important to write it for
now

End

Notice how it is easier now to read and understand the program, you can directly know the actions
executed by the program without referring back to the memory map by simply giving each address a
name at the beginning of your program.

NOTE: DIRECTIVES THEMSELVES ARE NOT CASE-SENSITIVE BUT THE LABELS YOU DEFINE ARE. SO YOU
MUST USE THE NAME AS YOU HAVE DEFINED IT SINCE IT IS CASE-SENSITIVE.

As you have already seen, the GPRs in a memory map (lower part) do not have names as the SFRs
(Upper part), so it would be difficult to use their addresses each time we want to use them. Here, the
“equate” statement proves helpful.

Num1 equ 20 ;:GPR @ location 20
Num?2 equ 40 :GPR @ location 40
Workrg equ0

Movlw 5 ; move the constant 5 to the working register

Movwf Num1 ; copy the value 5 from working register to Num1 (address 20)
Movlw 2 ; move the constant 2 to the working register

Movwf Num?2 ; copy the value 2 from working register to Num2 (address 40)
Movf Num1, Workrg ; copy back the value 5 from Num1 to working register

Nop ; this instruction does nothing, but it is important to write it for
now

End

When simulating the above code, you need to add Num1, Num2 to the watch window, however, since
Num1 and Num?2 are not SFRs but GPRs, you will not find them in the drop out menu of the “Add SFR”,
instead you will find them in the drop out menu of the “Add symbol”.

5] Watch [F=3E=R53
Add SFR| EEADR » | Add Symbal iv'
Update | Address N2
‘warkrg N

Wwatch 1 [wiatch 2 | wiatch 3 | watch 4]

«» The “INCLUDE” Directive

Suppose we are to write a huge program that uses all registers. It will be a tiresome task to define all
Special Function Registers (SFR) and bit names using “equate” statements. Therefore, we use the
include directive. The Include directive calls a file which has all the equate statements defined for you
and ready to use, its syntax is

#include “PXXXXXXX.inc" where XXXXXX is the PIC part number
Older version of include without #, still supported.
Example: #include “P16F84A.inc”

The only condition when using the include directive is to use the names of registers as Microchip
defined them which are ALL CAPITAL LETTERS and AS WRITTEN IN THE DATA SHEET. If you don’t
do so, the MPLAB will tell you that the variable is undefined!

#include “P16F84-A.inc”

Movlw 5 ; move the constant 5 to the working register

Movwf TMRO ; copy the value 5 from working register to TMRO (address 01)
Movlw 2 ; move the constant 2 to the working register

Movwf INTCON ; copy the value 2 from working register to INTCON (address 0B)
Movf TMRO, W ; copy back the value 5 from TMRO to working register

Nop ; this instruction does nothing, but it is important to write it for
now

End

s The “Cblock” directive

You have learnt that you can assign GPR locations names using the equate statements to facilitate
dealing with them. Though this is correct, it is not recommended by Microchip as a good programming
practice. Instead you are instructed to use cblocks when defining and declaring GPRs. So then, what is
the use of the “equ” directive?

From now on, follow these two simple programming rules:
1. The “EQU” directive is used to define constants
2. The “cblock” is used to define variables in the data memory.
The cblock defines variables in sequential locations, see the following declaration

Cblock 0x35
VarX
VarY
VarZ
endc

Here, VarX has the starting address of the cblock, which is 0x35, VarY has the sequential address 0x36
and VarZ the address of 0x37

What if I want to define variable at locations which are not sequential, that is some addresses are at
0x25 others at 0x40? Simply use another cblock statement, you can add as many cblock statements as
you need

% The Origin “org” directive
The origin directive is used to place the instruction which exactly comes after it at the location it
specifies.

Examples:

Org 0x00

Movlw 05 ; This instruction has address 0 in program memory

Addwf TMRO ; This instruction has address 1 in program memory

Org 0x04 ; Program memory locations 2 and 3 are empty, skip to address 4 where it
contains

Addlw 08 ; this instruction

Org 0x13 ; WRONG, org only takes even addresses

In This Course, Never Use Any Origin Directives Except For Org 0x00 And 0x04, Changing
Instructions’ Locations In The Program Memory Can Lead To Numerous Errors.

The Concept of Bank Switching

Write, build and simulate the following program in your MPLAB editor. This program is very similar to
the ones discussed above but with a change of memory locations.

#include “P16F84A.inc”

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)
Movf TRISA, W ; copy back the value 5 from TRISA to working register

Nop ; this instruction does nothing, but it is important to write it for
now

End

After simulation, you will notice that both TRISA and OPTION_REG were not filled with the values 5 and
2 respectively! But why?

Notice that the memory map is divided into two columns, each column is called a bank, here we have
two banks: bank 0 and bank 1. In order to access bank 1, we have to switch to that bank first and same
for bank 0. But how do we make the switch?

Look at the details of the STATUS register in the figure below, there are two bits RP0 and RP1, these bits
control which bank we are in:

% IfRPO is 0 then we are in bank 0
s [fRPOis 1 then we are in bank 1

We can change RPO by using the bcf/bsf instructions

K/
0’0

BCF STATUS, RPO —>RP0 in STATUS is 0 - switch to bank 0
» BSF STATUS, RPO —>RP0in STATUS is 1 - switch to bank 1

>

)

*,

BCF: Bit Clear File Register (makes a specified bit in a specified file register a 0)
BSF: Bit Set File Register (makes a specified bit in a specified file register a 1)

Try the program again with the following changes and check the results.

#include “P16F84A.inc”

BSF STATUS, RPO

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)
Movf TRISA, W ; copy back the value 5 from TRISA to working register

BCF STATUS, RPO

Nop ; this instruction does nothing, but it is important to write it for
now

End

The “Banksel” directive

When using medium-range and high-end microcontrollers, it will be a hard task to check the memory
map for each register we will use. Therefore, the BANKSEL directive is used instead to simplify this
issue. This directive is a command to the assembler and linker to generate bank selecting code to set the
bank to the bank containing the designated label

10

Example:

BANKSEL TRISA will be replaced by the assembler, which will automatically know which bank the
register is in and generate the appropriate bank selection instructions:

Bsf STATUS, RPO
Bcf STATUS, RP1

In the PIC16F877A, there are four banks; therefore, you need two bits to make the switch between any
of them. An additional bit in the STATUS register is RP1, which is used to make the change between the
additional two banks.

One drawback of using BANKSEL is that it always generates two instructions even when the switch is
between bank(0 and bank1l which only requires changing RP0. We could write the code above in the

same manner using Banksel.

#include “P16F84A.inc”

Banksel TRISA

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)

Movf TRISA, W ; copy back the value 5 from TRISA to working register

Banksel PORTA

Nop ; this instruction does nothing, but it is important to write it for now
End

Check the program memory window to see how BANKSEL is replaced in the above code and the
difference in between the two codes in this page.

The Flags

The PIC 16 series has three indicator flags found in the STATUS register; they are the C, DC, and Z flags.
See the description below. Not all instructions affect the flags; some instructions affect some of the flags
while others affect all the flags. Refer to the Appendix at the end of this experiment and review which
instructions affect which flags.

The MOVLW and MOVWEF do not affect any of the flags while the MOVF instruction affects the zero flag.
Copying the register to itself does make sense now because if the file has the value of zero the zero flag
will be one. Therefore, the MOVF instruction is used to affect the zero flag and consequently know if a
register has the value of 0. (Suppose you are having a down counter and want to check if the result is
zero or not)

11

STATUS REGISTER

R/W-0 R/W-0 R/W-0 R-1 R-1 RAW-x RAN-x RAW-x
IRP RP1 RPO TO PD z pc® ct
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR “1"=Bitis set ‘0" = Bit is cleared X = Bit is unknown
bit 6-5 RP<1:0>: Register Bank Select bits (used for direct addressing)
00 =Bank 0
01 =Bank 1
10 = Bank 2
11 = Rank 3
bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero

bit 1 DC: Digit Camy/Borrow bit (ADDWE, ADDLW, SUELW, SUEWF instructions){!!
1= A carry-out from the 4th low-order bit of the result occurred
0 = No carry-out from the 4th low-order bit of the result

bit 0 ¢: Carry/Borrow bit!") (2pDwF, 2DDLW, svELw, suewr instructions)i
1= A camry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order
bit of the source register.

Arithmetic and Logic Instructions

The PIC16 series logical and arithmetic instructions are easy to understand by just reading the
instruction, for from the name you readily know what this instruction does. There are the ADD, SUB,
AND, XOR, IOR (the ordinary Inclusive OR). They only differ by their operands and the result
destination. The following table illustrates that.

Type I - Literal Type

Type II - File Register Type

instruction)
2. The working register

Syntax xxxLW k xxxWF f,d
where k is constant where fis file register and
d is the destination (F, W)
Instructions Addlw, sublw, andlw, iorlw and | Addwf, subwf, andwf, iorwf, xorwf
xorlw
Operands 1. A literal (given by the | 1. Afile register in the data memory

(either SFR or GPR)
2. The working register

Result destination

The working register only

Two Options:
1. W: the Working register
2. F: The same File given in the
instruction

How does it work?

W =L operation W

F = F operation W

The value of F is overwritten by the
result, original value lost

W =F operation W

The value of F is the original value,
result stored in working register.

The order is important in the subtract operation

Examples
(assuming you are
using the include

xorlw OBB
W=W ~ 0BB

Andwf TMRO, W
W=TMRO & W

12

statement and | sublw .85 addwf NUM1, F

appropriate equ | W=854-W NUM1 =NUM1+W
statements for
defining GPRs) Subwf PORTA, F

PORTA = PORTA - W
Notice that in subtraction, the W has the minus sign

Many other instructions of the PIC16 series instruction set are of Type II; refer back to the Appendix at
the end of this experiment for study.

Starting with Basic Programs
Program One: Fibonacci Series Generator
In mathematics, the Fibonacci numbers are the following sequence of numbers:

0,11,2,3,5,8,13, 21, 34,55, 89
The first two Fibonacci numbers are 0 and 1, and each remaining number is the sum of the previous two

1 include "p16f84a.inc"

2 Fib0 equ 20 ;At the end of the program the Fibonacci series numbers from 0 to 5 will
3 Fibl equ21 ;be stored in Fib0:Fib5

4 Fib2 equ 22

5 Fib3 equ23

6 Fib4 equ 24

7 Fib5 equ25

8

9 Clrw ;This instruction clears the working register, W = 0
10 | clrf FibO ;The clrf instruction clears a file register specified, here Fib0 = 0
11 | movf Fib0, w ;initializing Fib1 to the value 1 by adding 1 to Fib0 and storing it in Fib1
12 | addlw 1

13 | movwf Fibl

14

15 | movf Fib0, W ; Fib2 = Fib1 + Fib0

16 | addwf Fib1l, W

17 | movwf Fib2

18

19 | movf Fibl, W ; Fib3 = Fib2 + Fib1

20 | addwf Fib2, W

21 | movwf Fib3

22

23 | movf Fib2, W ; Fib4 = Fib3 + Fib2

24 | addwf Fib3, W

25 | movwf Fib4

26

27 | movf Fib3, W ; Fib5 = Fib4 + Fib3

28 | addwf Fib4, W

29 | movwf Fib5

30 | nop

31 |end

13

Start a new MPLAB session, add the file examplel.asm to your project

Build the project

Select Debugger % Select Tool & MPLAB SIM

Add the necessary variables and the working register to the watch window (remember that

user defined variables are found under the “Add Symbol” list)

5. Simulate the program step by step, analyze and study the function of each instruction. Stop at
the “nop” instruction

6. Study the comments and compare them to the results at each stage and after executing the
instructions

7. As you simulate your code, keep an eye on the MPLAB status bar below (the results shown in

this status bar are not related to the program, they are for demo purposes only). The status bar

below allows you to instantly check the value of the flags after each instruction is executed.

B W N e

MPLAB STt PIC16FE4A pe:ldl Wilf zDCC

In the figure above, the flags are z, DC, C
+¢ A capital letter means that the value of the flag is one; meanwhile a small letter means a value
of zero. In this case, the result is not zero; however, digit carry and a carry are present.

Run and Breakpoints

Many times you will need to make some changes to your code, additions, omissions and bug fixes. It is
not then flexible to step into your code step by step to observe the changes you have made especially
when your program is large. It would be a good idea to execute your code all at once or up to a certain
point and then read the results from the watch window.

Now suppose we want to execute the Fibonacci series code at once - to do so, follows these steps:
1. Double click on the “nop” instruction (line 30), a red circle with a letter “B” inside is shown to
the left of the instruction. This is called a breakpoint. Breakpoints instruct the simulator to stop
code execution at this point. All instructions before the breakpoint are only executed

25 movwi Fib5
20 (3 nqﬂ
21 end

2a. Now press the run button

P ueoe 4 POREO
RunT T Animate

2b. Alternatively, you can instruct the IDE to automatically step into the code an instruction at a
time by simply pressing “animate”.

You can control the speed of simulation as follows:

1. Debugger & Settings & Animation/ Real time Updates
2. Drag the slider to set the speed of simulation you find convenient

14

[

—

—
Simulator Settings

T

Osc / Trace | Break Cptions | Stimulus
Code Coverage | Animation / Reatime Updates | Limitations
Animate step time
Fastest ! D Slowest
{No Delay) (5.0 Sec)
[T Enable Realtime watch updates
Faztest Slowest
(0.7 zec) 5.0 zec)
[ok || cCancel || Apph

Program Memory Space Usage

Though we have written about 31 lines in the editor, the total number of program memory space
occupied is far less! Remember that directives are not instructions and that they are not downloaded to
the target microcontroller. To get an approximate idea of how much space does the program occupy:

Select View & Program Memory % Symbolic tab

[

1
* | Program Memory = B ES Note that the last instruction
| vine | address | opcode | zave: | Iuil written is “nop” (end is a
1 000 0103 CLEW 8 . .
> 001 0120 CLRF Fibo directive). The total space
3 002 0820 MOVE Fib0, W occupied is only 18 memory
4 003 3E01 LDDLW Oxl locations
5 004 00R1 MOVWF Fibl
a 005 0820 MOVE Fibo, W
7 006 0721 LDDWF Fibl, W The “opcode” field shows the
8 007 00R2 MOVHE Fib2 1 hi d f each
9 008 0821 MOVF Fibl, W actual machine code o
10 009 0722 LDDWF FibZ, W instruction which is downloaded
11 00& 00R3 MOVWE Fib3 to the PIC
1z 00B os22 MOVF FibZ, W
13 ooc 0723 ADDWF Fib3, W
14 00D 00L4 MOVWF Fib4
15 00E 0823 MOVF Fib3, W
16 00F 0724 LDDWF Fib4, W
17 010 OORS MOVHF Fib5
NN o T
19 012 3IFFF v
4 | 1] | 3
| Opcode Hex | Machine| Symbolic |

15

Program Two: Implementing the function Result = (X +Y) ©Z
This example is quite an easy one, initially the variable X, Y, Z are loaded with the values which make

the truth table
1 include "p16F84A.inc"
2
3 cblock 0x25
4 VarX
5 VarY
6 VarZ
7 Result
8 endc
9
10 org 0x00
11 | Main ;loading the truth table
12 movlw B'01010101' ;ZYX Result
13 movwf VarX ;000 0 (bit7_VarZ, bit7_VarY, bit7_VarX)
14 movlw B'00110011' ;000 1 (bit6_VarZ, bit6_VarY, bit6_VarX)
15 movwf VarY ;010 1
16 movlw B'00001111' ;011 1
17 movwf VarZ ;100 1
18 ;101 0
19 ;110 0 .
20 ;111 0 (bit0_VarZ, bit0_VarY, bit0_VarX)
21 movf VarX, w
22 iorwf VarY,w
23 xorwf VarZ, w
24 movwf Result
25 nop
26 end
1. Startanew MPLAB session, add the file exampleZ2.asm to your project
2. Build the project
3. Select Debugger % Select Tool “ "' MPLAB SIM
4. Add the necessary variables and the working register to the watch window (remember that
user defined variables are found under the “Add Symbol” list)
5. Simulate the program step by step, analyze and study the function of each instruction. Stop at
the “nop” instruction
6. Study the comments and compare them to the results at each stage and after executing the

instructions

16

Appendix A: Instruction Listing

14-Bit Opcode

Mnemonic, Description Cycles Status | otes
Operands MSh LSh Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF f,d AddWand T 1 o0 0111 d4fff f£ff| CDCZ 1.2
ANDWF fd AMND W with T 1 00 0101 dfff f££ff z 1,2
CLRF f Clear f 1 00 o001 1fff fEff £ 2
CLRW - Clear W 1 00 0001 OXXX XXXX Z
COMF fd Complement f 1 00 1001 d4fff f££££ Z 1.2
DECF fd Decrement f 1 00 0011 d4dfff f£Eff Z 1.2
DECFSZ fd Decrement f Skip if 0 1(2) 00 1011 d4dfff f£Efff 123
INCF fd Increment f 1 00 1010 dfff f£fff il 12
INCFSZ f,d Increment f, Skip if 0 1(2) 00 1111 d4fff fIfff 123
IORWF f,d Inclusive OR W with T 1 00 0100 d4fff fEfff Z 1.2
MOVE fd Move f 1 00 1000 d4fff ££££ i 1.2
MOVWF f Move W to f 1 o0 o000 1fff ££fF£
NOP - MNo Operation 1 00 0000 OxXx0 0000
RLF fd Rotate Left f through Carry 1 00 1101 d4fff f£££f£ C 12
RRF fd Rotate Right f through Camry 1 00 1100 dfff f£fff [12
SUBWF fd Subtract W from f 1 oo o010 dfff f£fE£ff| C,DC.Z 12
SWAPF f,d Swap nibbles in T 1 00 1110 d4fff fIfff 1.2
XORWF fd Exclusive OR W with f 1 00 0110 4fff f££££ z 1,2
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF b Bit Clear f 1 01 o00bb bEfff £££f£ 1.2
BSF fb Bit Set f 1 01 o0l1bb bfff f£fff 12
BTFSC fb Bit Test f, Skip if Clear 1(2) 01 10bb bfff f£fff 3
BTF33 fb Bit Test f, Skip if Set 1(2) 01 11bb bfff £fff 3
LITERAL AND CONTROL OPERATIONS
ADDLW k Add literal and W 1 11 111x kkkk kkkk| CDCZ
ANDLW k AMD literal with W 1 11 1001 kkkk kkkk £
CALL k Call subroutine 2 10 okkk kkkk kkkk
CLRWDT - Clear Watchdog Timer 1 o0 oo0o0 0110 oloo| TOPD
GOTO k Go to address 2 10 1kkk kkkk kkkk
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk d
MOVLW k Move literal to W 1 11 ooxx kkkk kkkk
RETFIE - Return from intermupt 2 00 0000 0000 1001
RETLW k Return with literal in W 2 11 0lxx kkkk kkkk
RETURN Return from Subroutine 2 00 opoO0O0 0000 looof
SLEEP - o into standby mode 1 00 0000 0110 o011 | TOPD
SUBLW k Subtract W from literal 1 11 11ox kkkk kkkk| CDCZ
XORLW k Exclusive OR literal with W 1 11 1010 kkkk kkkk Z

17

Appendix B: MPLAB Tools

Another method to view the content of data memory is through the File Registers menu. To do
so: Select View Menu [File Registers

ct - MPLAB IDE v8.30 - File Registers

Project Debugger Programme

v
v

Project
Output

Toolbars 3

CPU Registers

Call Stack
Disassembly Listing
EEPROM

File Registers

Flash Data
Hardware Stack
LCD Pixel

Locals

Memaory

Program Memory
SFR./ Peripherals
Special Function Registers
Watch

1 Memory Usage Gauge

Simulator Trace

Simulator Logic Analyzer

P

5| File Registers

Address |CICI‘01|02|D3‘04|05|06|07|03‘09|0H|DB"
o0 -- 00 11 18 0O OO OO -- OO OO OO 0O f
10 o0 00 00 00 o0 o0 OO OO0 OO OO0 00 ¢
20 g0 o1 ©01 02 O3 O5 OO OO OO OO OO QO f
30 go o0 OO0 00 OO OO OO OO OO OO0 OO 00 f
40 go o0 OO0 00 OO OO OO OO OO OO0 OO 00 f
50 —_— == e mm = mm e mm s e == =

[m

Hex |Symbu:u|ic|

After building the Examplel.asm codes, start looking at address 20 (which in our code corresponds to

Fib0), to the right you will see the adjacent file registers from 21 to 2F.

Observe that after code execution, these memory locations are filed with Fibonacci series value as
anticipated.

18

Labsheet
1

University of Jordan
School of Engineering

Department of Computer Engineering
Embedded Systems Laboratory 0907334

)

Jra

e
Lol et ek

MPLAB and Instruction Set Analysis 1

LS
3 EB B

Name:
Student ID:
Section (Day/Time):
UNIVERSITY OF JORDAN

FACULTY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF COMPUTER ENGINEERING

COMPUTER NAME:

Name:

EMBEDDED SYSTEMS LABORATORY CPE0907334
Labsheet 1: MPLAB and Instruction Set Analysis 1

Student ID:

Section:

(Pre-lab) Part 1: Starting up with instructions

Answer the following short questions:

A)

B)

Q)

D)

E)

F)

G)

Write the instruction(s) needed to load the working register with the value 9F.

Write the instruction(s) needed to load the register REGX with the value 6B.

Write the instruction(s) needed to switch to Bank 2.

Write the instruction(s) needed to decrement the value found in PORTC with 9.

Write the instruction(s) needed to complement the value found in REGA.

Write the instruction(s) needed to Multiply the value found in TMRO with 8 (Hint:
rotating a number to the left multiplies it by two, use RLF instruction. Remember that the
rotation operation in PIC16 series is through the carry flag. (refer to the pic16f84A datasheet

Page38)

Write the instruction(s) needed to divide the value found in PORTB by 2 (Hint: rotating a
number to the right divides it by two, use RRF instruction. Remember that the rotation
operation in PIC16 series is through the carry flag.

(Pre-lab) Part2: Implementing logical function
1. Startanew MPLAB project, add the file example2.asm to your project.
2. Build the project.
3. Select Debugger % Select Tool &Y MPLAB SIM. Add the variable Result and the Working
register to the watch window.
4. Simulate the program step by step. Stop at the NOP instruction.
What is the content of Result register after executing your code?

o

Result =

Part 3: Simulate a program in MPLAB and check the results
1. Create a project with the code below in your ASM file.

#include "p16F84A.inc"
Vall equ 22
Val2 equ 33
Val3 equ 44
Val4 equ 45

moviw 03
movwf VAL1
moviw 09
movwf Val2
addwf Vall, w
movwf Val3
rrf Val3,1
movf Val3, w
iorlw 80
movwf Val4
nop

2. Build the project and the output window will show you numerous messages for errors and
warnings. Double click on the error. The pointer will move you to the line that caused it.
3. Inthe space below, list the two errors in the program
Line Number Error Correction

4. After correcting the errors in the ASM file:
a) Select Debugger & Select Tool Y’ MPLAB SIM.
b) Select View % and select Watch.
c) Under the “Add Symbol” list, add the variables Val1, Val2, Val3 and Val4.
d) Under the “Add SFR” list, add the working register to the watch window.
e) Simulate the program step by step, analyze and study the function of each instruction.
f) Stop at the NOP instruction.
g) Whatis the content of Val3 and Val4 registers after executing your code?

Val3 =

Val4 =

Part 4: Writing and Simulating Programs (1)
1. Create a project with an ASM file, using the steps in the Experiment 0 file.
2. Inthe ASM file, define the following variables in memory at the specified address.

Variable Address
NUM1 0x20
NUM?2 0x21
Result 0x22

3. In the ASM file, write a program that performs the following operation. Copy and paste your
code in the space below.

Result = NUM1 + NUM2 — D'13’

4. Test your program when NUM1 =D'16' and NUM2 = D'89'". Use the Watch window to examine
the Result variable.

Part 5: Writing and Simulating Programs (2)
1. Create a project with an ASM file, using the steps in the Experiment 0 file.
2. Inthe ASM file, define the following variables in memory at the specified address.

Variable Address
NUM1 0x30
NUM?2 0x31
Result 0x32

3. In the ASM file, write a program that performs the following operation. Copy and paste your
code in the space below.
(NUM1 x2+ NUM2 +15)

2

Result =

4. Test your program when NUM1 = D'20' and NUM2 = D'12". Use the Watch window to examine
the Result variable.

University of Jordan
School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Experiment 2: Instruction Set Analysis 2

& Modular Programming Techniques

Objectives

The main objectives of this experiment are to familiarize you with:
+¢ Program flow control instructions
++ Conditional and repetition structures

+¢ The concept of modular programming

0

+ Macros and Subroutines
Pre-lab requirements

Before starting this experiment, you should have already familiarized yourself with MPLAB software
and how to create, simulate and debug a project.

Written by Eng. Enas Jaara and Dr. Ashraf Suyyagh - Revised by Prof. Iyad Jafar

Introducing Conditional Instructions in PIC

The PIC 16series instruction set has four instructions which implement a sort of conditional statements.
These are: btfsc, btfss, decfsz and incfsz instructions.

1. btfsc checks for the condition that a bit is clear: 0 (Bit Test File, Skip if Clear)

2. Dbtfss checks for the condition that a bit is set one: 1 (Bit Test File, Skip if Set)

3. Review decfsz and incfsz functions from the datasheet

Example 1: movlw 0x09
btfsc PORTA, 0
movwf Numl
movwf Num2

The btfsc PORTA, 0 instruction tests bit 0 of PORTA and checks whether it is clear (0) or not such that:
+» Ifitis clear (0), the program will skip “movwf Num1” and will only execute “movwf Num2”
Only Num?2 has the value 0x09

« [Ifitis set (1), it will not skip but execute “movwf Num1” and then proceed to “movwf Num?2”
In the end, both Num1 and Num2 have the value of 0x09

Accordingly, if the condition fails, the code will continue normally and both instructions will be
executed.

Now, let’s consider the following example.
Example 2: moviw 0x09
btfsc PORTA, 0
goto firstcondition

Firstcondition, secondCondition, and
Proceed are called Labels, Labels are used
to give names for a specific block of
Proceed instructions and are referred to as shown

________ your remaining code above to change the program execution

goto secondCondition

firstcondition
movwf Num1
goto Proceed
secondCondition
movwf NumZ2
goto Proceed

Example 2 is basically the same as Example 1 with one main difference:
+« If bit 0 in PORTA is clear (0), then the program will skip “goto firstcondition” and will
only execute “goto secondCondition”, the program will then execute “movwf Num2” and
then “gotoProceed”
Only Num?2 has the value 0x09
« If it is set (1), it will not skip but execute “goto firstcondition”, the program will then
execute “movwf Num1” and then “gotoProceed”

Only Num1has the value 0x09

Conditional using Subtraction and how the Carry/Borrow flag is affected?

The Carry concept is easy when dealing with addition operations but it differs in borrow operations
according to Microchip implementation.

Carry is a physical flag; you will find it in the STATUS register,
Borrow is not implemented; it is in your mind ©

In the following examples, we will show the status of the Carry/Borrow ﬂTlg and how it is affected after
addition and subtraction operations.

Ex1) 99-66 Ex 2) 66 - 99
10011001 - EXpeCt no 01100110- Expect
01100110 OITOW SInce 10011001 borrow since
10011001+ 01100110+
10011010 2’s complement of 66 01100111
100110011 011001101
There is carry (C = 1), since Borrow is the There is no carry (C = 0), since Borrow is the
complement of Carry, then Borrow is 0 (No complement of Carry, then Borrow is 1 (There is
borrow) which is correct borrow) which is correct

Program One: Check if a value is greater or smaller than 10. If greater, then Result will have the
ASCII value G. Otherwise, Result will have the ASCII value S.

1 | include "p16F84A.inc"

2 | cblock 0x25

3 testNum

4 Result

5 | endc

6 org 0x00

7 | Main

8 movf testNum, W

9 sublw .10 ;104 - testNum
10 btfss STATUS, C

11 goto Greater :C =0, that's B=1, then testNum > 10
12 goto Smaller :C =1, that's B =0, then testNum < 10
13 | Greater

14 movlw A'G'

15 movwf Result

16 goto Finish

17 | Smaller

18 movlw A'S'

19 movwf Result

20 | Finish

21 nop

22 end

Let’s simulate this program in MPLAB to verify its operation.
1. Startanew MPLAB session, add the file program1.asm to your project.
2. Build the project.
3. Select Debugger % Select Tool & MPLAB SIM.
4. Add the necessary variables and the working register to the watch window (remember that
user defined variables are found under the “Add Symbol” list).

5. Enter values into testNum, simulate the program step by step, concentrate on what happens at
lines10-12.

6. Keep an eye on the Flags at the status bar below while simulating the code.

7. Enter other values lesser and greater and observe how the code behaves.

«» What is the value stored in Result when testNum = 10? Is this correct? Can you think of a
solution?

Program Two: Counting the Number of Ones in a Register’s Lower Nibble
Introducing simple conditional statements

This program will take a hexadecimal number as an input in the lower nibbles (bits 3:0) in a register
called testNum. The number will be masked by ANDing it with OF (remember that 0 & Anything = 0,
while 1 & anything will remain the same). We used masking here because if the user accidentally wrote
a number in the higher nibble (bits 3:0), it will be forced to zero. The number in the lower nibble will
not be affected (ANDed with 1). The masked result will be saved in a register called tempNum.

Now, tempNum will be rotated to the right, i.e. bitO (least significant bit) will move to the C flag of the
STATUS register after rotation. Then it will be tested whether it 0 or 1. If it is 1, the numOfOnes register
will be incremented. Else, the program proceeds. This operation will continue for 4 times (because the
number of bits in the lower nibble is 4)

1 include "p16f84a.inc" Byte 8 bits

z 7 6 5 4 3 2 1 0
3 | cblock 0x20 Higher 4 bits Lower 4 bits
4 testNum ;GPR @ location 20 Upper Nibble | Lower Nibble
5 tempNum ;:GPR @ location 21

6 endc

7

8 cblock 0x30

9 numOfOnes ;GPR @ location 30

10 | endc

11

12 | org 0x00

13 | clrf numOfOnes ; Initially number of ones is 0

14 | movf testNum, W ; Since we only need to test the number of ones in the lower nibble, we
15 ; mask them by OF (preserve lower nibble and discard higher nibble)

16 | andlw OxOF ; in case a user enters a number in the upper digit. Save masked result
17 | movwf tempNum ; in tempNum

18 | rrf tempNum, F ; rotate tempNum to the right through carry, that is the least

19 ; significant bit of tempNum (bit0) goes into the C flag of the

20 ; STATUS register, while the old value of C flag goes into bit 7 of

21 ; tempNum

22 | btfsc STATUS, C ; tests the C flag, if it has the value of 1, increment number of ones and
23 |incf numOfOnes, F ;proceed, else proceed without incrementing

24 | rrf tempNum, F

25 | btfsc STATUS, C ;Same as above

26 | incf numOfOnes, F

27 | rrf tempNum, F

28 | btfsc STATUS, C

29 |incf numOfOnes, F
30 | rrf tempNum, F
31 | btfsc STATUS, C

32 | incf numOfOnes, F
33 | nop

34 | end

As you can see in program 2, we did not write instructions to load testNum with an initial value to test;
this code is general and can take any input. So, how do you test this program with general input?

After building your project, adding variables to the watch window and selecting MPLAB SIM simulation
tool, simply double click on testNum in the watch window and fill in the value you want. Then Run the
program.

Change the value of testNum and re-run the program again, check if numOfOnes hold the correct value.
Coding for Efficiency: Repetition Structures

You have observed in the code of Program 2 above that instructions from 18 to 32 are simply the same
instructions repeated over and over four times for each bit tested. Now we will introduce the repetition
structures, similar in function to the “for” and “while” loops you have learnt in high level languages.
This reduces the total number of instruction in the program.

Program Three: Counting the Number of Ones in a Register’s Lower Nibble
Using a Repetition Structure

1 include "p16f84a.inc"

2 cblock 0x20

3 testNum

4 tempNum

5 endc

6

7 cblock 0x30

8 numOfOnes

9 counter ; since repetition structures require a counter, one is declared
10 endc

11

12 org 0x00

13 clrf numOfOnes

14 movlw 0x04 ; counter is initialized by 4, the number of the bits to be tested
15 movwf counter

16 movf testNum, W

17 andlw 0xOF

18 movwf tempNum

19 | Again

20 rrf tempNum, F

21 btfsc STATUS, C

22 incf numOfOnes, F

23 decfsz counter, F ; The contents of register counter are decremented then test :

24 goto Again ; if the counter reaches 0, it will skip to “nop” and program
25 | ends
26 nop ; if the counter is > 0, it will repeat “goto Again”

end

Introducing Modular Programming

Modular programming is a software design technique in which the software is divided into several
separate parts, where each part accomplishes a certain independent function. This “Divide and Conquer”
approach allows for easier program development, debugging as well as easier future maintenance and

upgrade.

Modular programming is like writing C++ or Java functions, where you can use the function many
times only differing in the parameters. Two structures which are similar to functions are Macros and
Subroutines which are used to implement modular programming.

« Subroutines

Subroutines are the closest equivalent to functions that we learnt in high-level languages. Subroutines
have the following requirements and features:
e A subroutine starts with a Label giving them a name and end with the instruction return.
e Subroutines can be written anywhere in the program after the org and before the end directives.
e Subroutines are used in the following way: Call subroutineName.
e Subroutines are stored once in the program memory, each time they are used, they are
executed from that location.

Examples:

doMath
Instruction 1
Instruction 2

Instruction n
return

Process
Instruction 1
Instruction 2

Calculate
Instruction 7
Instruction 8
return
This is still one subroutine, no matter the
number of labels in between

Remember that subroutines alter the flow of the program; thus they affect the program counter
and stack. So what is the stack and how is it used? Consider the following code which contains
the main program and the doMath subroutine.

Main

Instruction1
Instruction2
Call doMath
Instruction4
Instruction5
Nop

Nop

doMath
Instruction35
Instruction36
Instruction37
return

Initially the program executes sequentially; instructions 1 then 2 then 3. When the instruction Call
doMath is executed, the program will no longer execute sequentially. Instead, it will start executing
Instructions35, then 36 then 37, and return. What will happen when the return instruction is executed?
What is the next instruction that is executed next?

When the Call doMath instruction is executed, the address of the next instruction (which as you should
already know is found in the program counter) Instruction4 is saved in a special memory called the
stack. When the return instruction is executed, it reads the last address saved in the stack, which is the
address of Instruction4 and then continues from there (Read section 2.4.1 of the P16F84A datasheet for
more information regarding the stack)

+ Macros
Macros are declared using the macro and endm directives as shown below.
macroName macro

Instruction 1
Instruction 2

Instruction n
endm

Macros have the following requirements and features:

++ Macros should be declared at the beginning of your code, i.e. before the main program. It is not
recommended to declare macros in the middle of your program.

» Macros can be used in your code by only writing their name: macroName

» Each time you use a macro, the assembler will replace the macro name the you write with its
body as show in it will be replaced by its body. Therefore, the program will execute sequentially,
i.e. the flow of the program will not change and the Stack is not affected

>

)

L)

>

)

L)

Programs Four and Five
The following simple program demonstrates the differences between using macros and subroutines.
They essentially perform the same operation: Num2 = Num1 + Num?2

Example4 using Macro Example5 using Subroutine
1 | include "p16f84a.inc" 1 | include "p16f84a.inc"
2 2
3 | cblock 0x30 3 | cblock 0x30
4 Num1 4 Num1
5 Num?2 5 Num?2
6 | endc 6 | endc

7 7
8 | Summation macro 8
9 movf Numil, W ;Macro 9
10 | Body 10
11 addwf Num2, F 11
12 endm 12
13 13 org 0x00
14 org 0x00 14 | Main
15 | Main 15 Movlw 4
16 Movlw 4 16 Movwf Num1
17 Movwf Num1 17 Moviw 8
18 Movlw 8 18 Movwf Num?2
19 Movwf Num2 19 Call Summation
20 Summation 20 Movlw 1
21 Movlw 1 21 Movwf Num1
22 Movwf Num1 22 Movlw 9
23 Movlw 9 23 Movwf Num2
24 Movwf Num2 24 Call Summation
25 Summation 25 goto finish
26 26
27 | finish 27 | Summation
28 nop 28 movf Numl, W
end 29 addwf Num?2, F
30 return
31 | finish
32 nop
33 end

Analyzing the two programs and highlighting the differences

For both applications, go to View > Program Memory, let’s see the differences:

[| |
13 org O0x00

Opcode | Label :| 14 Main
3004 Main MOVLW Ox4 s = Movlw 4
2008 vOvTH ons e MovwE Numl
D0B1 MOVWE Num2 Lo Movlw 8
0830 MOVF Numl, W Le Movwf Num2
0781 ADDWF Num2, F 19 Summation
3001 MOVLW Oxl 20 Movlw 1
DOBO MOVWE Numl 21 Movwf Numl
3009 MOVLW OxS 22 Movlw 9
D0B1 MOVWE Num2 53 Movwf Num?2
0830 MOVF Numl, W o4 S ummat i on
07B1 ADDWF Num2, F s
0000 finish NOPB L
SFFF 26 finish
3FFF 27 nop
3FFF 28 end

Figure 1. The example using macros

In the program memory window, notice that the macro name is replaced by its body. The instructions
movf Num1, W and addwf Num2, F replace the macro name @ lines 19 and 24. Using macros clearly
affects the space used by the program as it increases due to code copy.

Address Cpcode Label
000 3004 Main
001 QO0BD
002 3008
003 00B1
o004 2008
005 3001
006 QO0BD
o007 3009
008 00B1
005 200B
00n 280E
00B 0830 Summation
goc 07B1
ooD 0008
00E 0000 finish
00F 3FFF
010 3FFF
011 3FFF
012 3FFF
n13 AFFF

i |

MOVLW 0Ox4
MOVWE Huml
MOVLW Ox8
MOVWE Hum2
CALL Summation
MOVLW 0=l
MOVWE Numl
MOVLW 0x9
MOVWE Num?
CALL Summation
GOTC finish
MOVE Huml, W
ADDWEF Hum2?, F
RETUEREN

HCP

Main
Movlw 4
Movwt MNuml
Mowvlw a8

Mowvwt Numz
Call Summation

Mowlw 1
MovwE Numl
Mowvlw S

MovwE Num?2
Call Summation
goto f£inish

Summation
movf Numl, W
addwf Num2, F
return

finish
nop
end

Figure 2. The example using subroutines

On the other hand, Figure 2 shows that the subroutine is only stored once in the program memory. No

code replacement is present.

You can also observe from the program memory that the program utilizing the macro executes
sequentially from start to end, while the second program alters the program flow. To investigate the
effect of subroutines on the stack, do the following for Program Two:

1. After building the project, go to View - Hardware Stack

(o= e |

5| Hardware Stack
TOS Stack Lewvel
=
1
2
3
4
5
&
7
3

Return Address Location |

Emptyv

0000
0000
0ooo
0000
0000
0000
0000
oooo

2. Simulate the program up to the point when the green arrow points to the first Call Summation

instruction.

3. Look at the status bar below your MPLAB screen. What is the value of PC (program counter)?
Note that the program counter has the address of the next instruction to be executed, that is Call
Summation. Also, remember the instruction the arrow points to is not yet executed.

4. Now execute (use Single step) the Call Summation instruction.

K/

% After doing step4, what is the address of PC?

+ What is now stored at the TOS (Top of Stack)? (Refer to the Hardware Stack window)

+ How many levels of stack are used?
5. Now, continue simulating the program (subroutine). After executing the return instruction
+ What is the address of PC?
+ What is now stored at the TOS?
+» How many levels of stack are used?
6. Repeat the steps above for the second Call Summation instruction?

The operation of saving the address on the stack - and any other variables - when calling a subroutine
and later retrieving the address - and variables if any - when the subroutine finishes executing is
called context switching.

Important Notes:
1. Assuming both a macro and a subroutine has the exact same body (same instructions), the
execution of the subroutine takes slightly more time due to context switching.
2. You can use macro inside a macro, call a subroutine inside a subroutine, use a macro inside a
subroutine and call a subroutine inside a macro

Further Simulation Techniques: Step Over and Step Out

While stepping through program execution, you might need to execute the subroutine without seeing
the execution of instruction inside it. This is usually used when you know that that the subroutine
executes correctly and you are only interested to see execution of its instructions. For this purpose, you
can use the Step Over option in the simulation toolbar, as shown below, when you the execution reaches
the call instruction. For example, to use this option in Example 5, you need to do the following:

1. Simulate program two up to the point when the green arrow points to the first Call Summation
instruction.
2. Press Step Over, observe how the simulation runs

)3 b M P FE O

N

“Step Over” “Step Out

The Step Out option shown in the toolbar resembles Step Over operation; however, it is used when you
are already inside the subroutine and you want to continue executing the subroutine as a whole
unit without seeing how each remaining individual instruction is executed. For example, to use this
option in Example 5, you need to do the following:
1. Simulate the program up to the point when the green arrow points to the first instruction inside
the Summation subroutine: movf Num1, W
3. Press Step Out. Observe how the program execution continues from the instruction after the
Call Summation instruction.

In both cases, the instructions inside the subroutine are executed but you only see the end result of the
subroutine.

10

Measuring the Execution Time

To measure the total time spent in executing the whole program or a certain subroutine, do the
following:

1. Set the oscillator (external clock speed, Fosc) by following the figure below.
2. Setthe processor frequency to 4MHz. This means that each instruction cycle time is 4MHz/4
=1MHzand T=1/f=1/MHz = 1ps.

Debugger | Programmer Tools Cor e se;ﬁngs v—__@ Ei

Select Tool 3 |

Code Coverage I Animation / Realtime Updates I Limitations
Clear Memory 3 Osc / Trace | Break Options I Stimulus

Tequency

Run Fa

Animate
Halt F5
Step Into F7

Trace Optiohs

Step Over F& Trace All Buffer Size (1K - 48770K)

Step Out [T Break on Trace Bufer Ful B4 @ K lines
0 M lines
Reset k

Breakpoints... F2 [oK J[Cancel][Bpply]

StopWatch

Complex Breakpoints
Stimulus k
Profile J
Clear Code Coverage

Refresh PM

Settings...

3. Now set breakpoints at the beginning and end of the code you want to calculate time for

Main

al | Movlw 4
Movwi Numl
Movlw 8
Mowvwi NumZ
Call Summation

@ Mowvlw 1
Movwi Numl
Movlw 9

Movwi Num2
Call Summation

goto finish

4. Go to Debugger - Stop Watch

11

Debugger | Programmer Tools Cor Iﬂﬂtopwatch EI@

Select Tool b

R .
Clear Memory Stopwatch T atal Sirulated

Run Fa Synch | Instruction Cycles o 0

Zero | Time [uSecs | 0.000000 0.000000

Animate

Halt+ Fg

Step Into F7
Step Ower Fa
Step Out

Reset »

Frocesszor Frequency [MHz | 4000000

Breakpoints... F2

StopWatch

Complex Breakpoints |
Stimulus »
Profile 3
Clear Code Coverage

Refresh P

Settings...

5. Now run the program, when the pointer stops at the first breakpoint, Press Zero.
6. Run the program again. When the pointer reaches the second breakpoint, read the time from
the stopwatch. This is the time spent in executing the code between the breakpoints.

Modular Programming

How to think Modular Programming?

Initially, you will have to read and analyze the problem statement carefully, based on this you will have
to:

1. Divide the problem into several separate tasks.

2. Look for similar required functionality.

Non Modular and Modular Programming Approaches: Read the following problem statement

A PIC microcontroller will take as an input two sensor readings and store them in Num1 and NumZ2. Then,
it will multiply both values by 5 and store them in Num1_5, and NumZ2_5. At a later stage, the program will
multiply Num1 and NumZ2 by 25 and store them in Num1_25 and NumZ2_25 respectively.

Analyzing the problem above, it is clear that it has the following functionality:
% Multiply Num1 by 5

Multiply Num2 by 5

Multiply Num1 by 25

Multiply Num2 by 25

L)

X3

8

X3

8

R/
0’0

As you already know, we do not have a multiply instruction in the PIC 16F84A instruction set, so we do
it by addition. Remember:

12

2x3=2+2+2

; add 2 three times

7x9=7+7+7+7+7+7+7+7+7 ;add 7 nine times

So, we write a loop that repeats the addition operation certain number of times. For example, suppose
we want to multiply 9x4 and number 4 is in location temp. Initially one nine is placed in W, then we

construct a loop to add the remaining 8 nines:

movlw .8
movwf counter
movf temp,w ; Istfour in W
add
addwf temp, w
decfsz counter, f
goto add

; continue with code

The following table compares the code required to perform multiplication by 5 using non-modular and

modular approaches.

; decrement counter, if not zero keep adding, else continue

A Non Modular Programming Approach

Modular Programming Approach

Write multiply code for each operation above

Write one “Multiply by 5” code, use it two times
Write one “Multiply by 25” code, use it two
times

Note that you do not need to write the “Multiply
by 25” code from scratch, since 25 is 5x5, you
can simply use “Multiply by 5” two times!

Code lines: 38

Code lines: 27

get Numl

Write whole code to multiply Num1 by 5
Store in Num1_5

get Num?2

Write whole code to multiply Num2 by 5
Store in Num2_5

get Numl

Write whole code to multiply Num1 by 25
Store in Num1_25

get Num2

Write whole code to multiply Num2 by2 5
Store in Num2_25

goto finish

nop

N = I =V (R SNSEUEN [SN S SN SN

get Numl

call “multiply by 5” function
Store in Num1_5

get Num?2

call “multiply by 5” function
Store in Num2_5

get Numl

call “multiply by 25” function
Store in Num1_25

get Num?2

call “multiply by 25” function
Store in Num2_25

goto finish

nop

L e o S S Gy S Gy Uy U g L S W G W G S G

A single Multiply by 5 function
A single Multiply by 25 function 5

(ee]

include "p16f84a.inc"
cblock 0x30

include "p16f84a.inc"”
cblock 0x30

; because we put the first 4 in W, then we add the remaining 8 fours to it

13

endc

Main

add1

add2

add3

Num1
Num?2
Num1_5
Num?2_5
Num1_25
Num2_25
temp
counter

org 0x00

movf Numl,w ;Numlx5
movwf temp

movlw .4

movwf counter

movf temp, w

addwf temp, w
decfsz counter, f
goto addl
movwf Num1_5

movf Num2,w ;Num2x5
movwf{ temp

movlw .4

movwf counter

movf temp,w

addwf temp, w
decfsz counter, f
goto add2
movwf Num2_5

movf Numl,w ;Numlx?25
movwf temp

movlw .24

movwf counter

movf temp,w

addwf temp, w
decfsz counter, f
goto add3
movwf Num1_25

movf Num2,w ;Num2x25
movwf temp
movlw .24

endc

Main

Mul5

add

Mul25

finish

Num1
Num?2
Num1_5
Num?2_5
Num1_25
Num2_25
temp
counter

org 0x00

movf Numl, w
call Mul5
movwf Num1_5

movf Num?2, w
call Mul5
movwf Num2_5

movf Numl, w
call Mul25
movwf Num1_25

movf Num2, w
call Mul25
movwf Num2_25
goto finish

movwf temp
movlw .4
movwf counter
movf temp,w

addwf temp, w
decfsz counter, f
goto add
return

movwf temp
call Mul5
movwf temp
call Mul5
return

nop
end

;:Num1l x 5

;Num2 x 5

;:Num1 x 25

;Num?2 x 25

IV

movwf counter

movf temp,w
add4

addwf temp, w

decfsz counter, f

goto add4

movwf Num2_25

goto finish
finish

nop

end

Passing Parameters to Subroutines

Subroutines and macros are general codes; they work on many variables and generate results. So, how
do we tell the macro/subroutine that we want to work on this specific variable? We have two

approaches:

Approach 1

Approach 2

Place the input in the working register
Take the output from the working register

Example:

Main
Movlw 03
Call MUL_by4
Movwf Resultl
Movlw 07
Call MUL_by4
Movwf Result2
Nop

;input to W

;output from W
;input to W

;output from W

MUL_by4
Movwf temp
RIf temp,F
RIf temp, F
Movf temp, W
Return

;place resultin W

Store the input(s) in external variables
Load the output(s) in external variables

Example:

Movf Numl, W
Movwf Num

Call MUL_by4
Movf Result, W
Movwf Resultl
Movf Num2, W
Movwf Num

Call MUL_by4
Movf Result, W
Movwf Result2

;load Num with Num1

;read the result and store
;it in Result1
;load Num with Num?2

;read the result and store
;it in Result2

MUL_by4
RIf Num,F
RIf Num, W
Movwf Result
Return

;place result in W

In this approach, the MUL_by4 subroutine takes
the input from W (movwf), processes it then
places the result back in W. Notice that we initially
load W by the numbers we work on (here 03 and
07) then we take their values from W and save
them in Result1 and Result2 respectively

In this approach the MUL_by4 subroutine expects
to find the input in Num and saves the output in
Result. Therefore, before calling the subroutine we
load Num by the value we want (here Num1) and
then take the value from Result and save it in
Resultl. The same is repeated for Num2

This approach is useful = when the

subroutine/macro has only one input and one

the
and

when
inputs

useful
many

This approach s
subroutine/macro takes

15

output ‘ produces multiple outputs

Special Subroutines: Lookup Tables

Lookup tables are a special type of subroutines which are used to retrieve values depending on the
input they receive. They are invoked in the same as any subroutine: Call tableName. They work on the
basis that they change the program counter value; therefore, alter the flow of instruction execution. The
retlw instruction is simply a return instruction with additional feature that is returning a value in W
when it is executed.

Syntax:
lookUpTableName
addwf PCL, F ;add the number found in the program counter to PCL (Program counter)
nop
retlw Value ;if W has 1, execute this
retlw Value ;if W has 2, execute this

retlw Value
retlw Value

Value can be in any format: decimal, hexadecimal, octal, binary and ASCIL. It depends on the
application you want to use this look-up table in.

Program Six: Displaying the 26 English Alphabets

This program works as follows. Counter is loaded with 1 because we want to get the first letter of the
alphabet, when we call the look-up table, it will retrieve the letter ‘A’. The counter is incremented by 1
and then checked if we have reached the 26t letter of the alphabet (27 - the initial 1), if not we proceed
to display the second letter ‘B’ and the third ‘C’ and so on. When we have displayed all the alphabets,
counter will have the value 27 after which the program exits.

1 | include "p16f84a.inc"

2 | cblock 0x25

3 counter ;holds the number of Alphabet displayed
4 Value ;holds the alphabet value

5 | endc

6 org 0x00

7 | Main

8 movlw 1 ;Initially no alphabet is displayed

9 movwf counter

10 | Loop

11 movf counter, W

12 call ~ Alphabet ;display Alphabet

13 movwf Value

14 incf counter, F ;Each time, increment the counter by 1
15 movf counter,w ;if counter reaches 27, exit loop else continue
16 sublw .27

17 btfss STATUS, Z

16

18 goto Loop

19 goto finish

20 | Alphabet

21 addwf PCL,F

22 nop

23 retlw A’

24 rettlw 'B'

25 retlw 'C’

26 retlw 'D’

27 retlw 'E'

28

29 .

30 retlw 'Z'

31 | finish

32 nop

33 end
Exercise.

1. Complete the look-up table above with the missing alphabet

2. Add both counter and value to the watch window.

3. Place a breakpoint @ instruction 14: incf counter, F

4. Run the program, keep pressing run and observe the values of the variables in the Watch
window

Appendix A: Documenting your program

It is a good programming practice to document your program in order to make it easier for you or
others to read and understand it. For that reason, we use comments. A proper way of documenting your
code is to write a functional comment, which is a comment that describes the function of one or a set
of instructions. In MPLAB IDE, comments are defined after a semicolon (;) and are not read by MPLAB
IDE.

BSF STATUS, RPO
; Switch to Bank 1 Good comment \/
; Set the RPO bit in the Status Register to 1 Bad Comment, no new added info X

How to professionally document your program?

At the beginning of your program, you are encouraged to add the following header which gives an
insight to your code, its description, creator, version, date of last revision, etc... Most importantly, it is
encouraged to document the necessary connections and classify them as input/output.

kokokskok ok ok sk ok kKoK Kok ok ok kK KoK oK ok sk o kKoK ok sk ok ok kKoK oK ok ok ok sk kKoK ok ok ok sk ok koK Kok ok sk ok kKoK oK ok ok sk ok ok kKoK ok sk ok sk sk koK ok sk sk sk sk ok koK ok ok sk sk koK ok ok ok sk ok kK K
)

; * Program name: Example Program

; * Program description: This program

. K
)

; * Program version: 1.0
; * Created by Embedded lab engineers

; * Date Created: September 1st, 2008
; * Date Last Revised: September 16t, 2008

17

& 3Rk skok sk sk sk skok skosk sk sk sk skok skosk sk sk skok skosk sk skok skok sk sk sk skok skosk sk sk sk skok skosk sk skok skosk skosk sk skok skosk sk sk sk skosk skosk sk sk sk sksk skosk sk sksk skosk sk sk skosk skok sk sk skok skokskok sk ko skok sk k-
)

; * Inputs:

e Switch 0 (Emergency) to RBO as interrupt
e Switch 1 (Start Motor) to RB1

B Switch 2 (Stop Motor) to RB2

B Switch 3 (LCD On) to RB3

; * Outputs:
* RB4 to Motor
B RB5 to Green LED (Circuit is powered on)

» 3k 3k ok ok ok ok ok ok ok ok ok Sk ok ok ok ok Sk ok ok sk ok ok ok Sk ok ok ok ok Sk Sk ok ok ok ok ok Sk ok 3k ok Sk Sk ok ok ok ok ok Sk sk ok 3k ok ok Sk ok >k ok ok Sk sk sk ok ok ok Sk ok sk ok sk ok Sk ok ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok Sk sk sk sk sk sk sk sk ok sk ok ok
)

1. Your code declarations go here: includes, equates, cblocks, macros, origin, etc...
2. Your code goes here...
3. When using subroutines/macros, it is advised to add a header like this one before each to

properly document and explain the function of the respected subroutine/macro.

« 3k 3k ok ok sk ok ok sk ok ok ok Sk ok ok ok ok sk Sk sk sk >k sk ok Sk ok sk ok ok Sk Sk ok ok sk sk ok Sk ok ok Sk Sk Sk sk ok ok Sk Sk Sk sk ok ok sk ke Sk sk sk sk ok Sk sk sk ok sk sk sk sk sk ok sk sk sk ok sk ok sk sk sk ok sk ok sk sk sk ok ok sk ok sk sk sk sk sk sk sk sk ok sk sk ok
)

;* Subroutine Name: ExampleSub

;* Function: This subroutine multiplies the value found in the working register by 16
;* Input: Working register

;* Output: Working register * 16

& 3K 3k 3Kk ok ok ok ok ok Sk ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok skok ok ok skok sk sk kk sk ok
’

[18 [

Appendix B: Instruction Listing

14-Bit Opcode

Mnemonic, Description Cycles Status Motes
Operands MSh LSh Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF fd AddwW and f 1 oo 0111 d4dfff ffff| CDCZ 1,2
ANDWEF fd AND W with T 1 00 010l dfff ££ff Z 1,2
CLRF f Clear f 1 00 0001 1fff f££ff Z
CLRW - Clear W 1 00 0001 OXXX XXXX Z
COMF fd Complement f 1 oo 1001 dfff f££ff Z 1,2
DECF fd Decrement f 1 00 0011 dfff Efff Z 1,2
DECFSZ fd Decrement f, Skip if 0 1(2) 00 1011 dfff f££ff 1,23
INCF fd Increment f 1 oo 1010 dfff f££ff Z 1,2
INCFSZ fd Increment f, Skip if 0 1(2) 00 1111 dfff ££ff 1,23
IORWF fd Inclusive OR W with f 1 00 o0lo0 d4dfff Efff Z 1,2
MOVFE fd Move f 1 00 1000 d4dfff Efff Z 1,2
MOWVWF f Move W io f 1 oo oooo 1fff f£fff
NOP - No Operation 1 00 0000 OXxO0 0000
RLF fd Rotate Left f through Carry 1 00 1101 dfff f££ff C 1,2
RRF fd Rotate Right f through Carry 1 oo 1100 dfff f££ff C 1,2
SUBWF fd Subtract W from T 1 oo oolo dfff ffff| C.DC.Z 1,2
SWAFPF fd Swap nibbles in T 1 00 1110 dfff Efff 1,2
XORWF f, Exclusive OR W with f 1 00 0110 d4dfff Efff Z 1,2
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF fb Bit Clear f 1 01 o00bb bEEf Efff 1,2
BSF fb Bit Setf 1 0l 0lbb bfff f££ff 1,2
BTFSC ib Bit Test T, Skip if Clear 1{2) 01 10bb bfff f££ff 3
BTFSS fb Bit Test f, Skip if Set 1(2) 01 11bb bfff ££ff 3
LITERAL AND CONTROL OPERATIONS
ADDLW k Add literal and W 1 11 111x kkkk kkkk| CDCZ
ANDLW k AND literal with W 1 11 1001 kkkk kkkk Z
CALL k Call subroutine 2 10 0Okkk kkkk kkkk
CLRWDT - Clear Watchdog Timer 1 o0 0000 0110 0100| TQ,PD
GOTO k Go to address 2 10 1kkk kkkk kkkk
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z
MOWVLW k Move literal to W 1 11 o00xx kkkk kkkk
RETFIE - Return from intermmupt 2 00 0000 0000 1001
RETLW k Return with literal in W 2 11 0lxx kkkk kkkk
RETURN - Return from Subroutine 2 00 0000 0000 1000
SLEEP - Go into standby mode 1 o0 0000 0110 0011| TQPD
SUBLW k Subtract W from literal 1 11 1lox kkkk kkkk| CDCZ
XORLW k Exclusive OR literal with W 1 11 1010 kkkk kkkk Z

19

Labsheet
2

University of Jordan

Faculty of Engineering and Technology
Department of Computer Engineering
Embedded Systems Laboratory 0907334

AR LS
-

Name:
Student ID:

Section (Day/Time):

COMPUTER NAME:

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING
DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

EMBEDDED SYSTEMS LABORATORY CPE0907334
Labsheet 2: Instruction Set Analysis 2 & Modular Programming
Techniques

Name: Student ID:
Section:

Pre-lab) Part 1: Starting up with instructions
Answer the following short questions:

A) Write the instructions needed to check if the value found in REGA equal to 10.

B) Write the instructions needed to check if the value found in REGA equal to zero.

(Pre-lab) Part2: Code Analysis Skills
Answer the following questions regarding Program 3 in the experiment on page 5. Each
question is independent from the others.

1. What will the results of the Program 3 be when we substitute the instruction @ line 23
“decfsz counter, F” with decfsz counter, W?

2. Assuming that the PIC runs at an external oscillator speed of 4 MHz? What is the time spent in
executing the Program 3.asm code to reach the NOP instruction?

(Pre-lab) Part3: Code Writing Skills
Modify Program1.asm code in the experiment to test if testNum has the decimal value 10, then
Result will have the ASCII value ‘R’.

Your code

Part4: Code Analysis Skills

Read and simulate the given code Labsheet2.asm and answer the questions which follow. To
prepare for simulation, perform the following steps:
» Go to View Menu -> Watch.
» From the drop out menu choose the registers you want to watch during simulation and click
ADD Symbols for each one (Num, Num_7, Num_49).
» Select Debugger ->Select Tool ->MPLAB SIM.
» Simulate the program.

1. What will be stored in the following registers when Num has the values listed in the table

below?
Value of Num_7 after Value of Num_49 after
Num Mul7 subroutine call in Mul49 subroutine call in
Main Main
0x02
0x05

2. Whatis the total number of instructions inside the Mul49 subroutine?

3. Where does Mul7 subroutine expect to find its input? Where does it store its output?

Input:

Output:

4. Whatis the value at the top of stack when the Mul49 subroutine call instruction executed is?

Part 5: Timing Program Execution

Consider the following code. Determine the elapsed time when the program execution reaches the
NOP instruction inside the L1 subroutine. Assume a PIC16F84A microcontroller running at 800KHz.
Use the Stop Watch tool in MPLAB. You need to load locations CNT1 and CNT2 and VAL with values
0x15, 0xC2 and 0x05, respectively, before simulating the code. Show your simulation to the

SUpervisor.

#include "P16F84A.inc"
cblock 0x25

CNT1
CNT2
VAL
endc
org 0x0000

movf CNT1,W
subwf CNT2, F

decf CNT2,F
btfss STATUS, C
call L1

incf VAL,F

L1 incf VALF
movf CNT2, W

andwf VAL, F
bcf STATUS, C
rrf VAL, F
decfsz CNT1, F
goto L1

nop

return

end

Time =

Part 6: Code Writing Skills

Write a program which converts a number from unpacked BCD format saved in three registers to one
decimal number, assuming that registers names are BCDH, BCDM and BCDL. BCDH (High Digit of the
decimal number) is at location 0x21, BCDM (Mid Digit of the decimal number) is at location 0x22,
BCDL (Low Digit of the decimal number) is at location 0x23, and Result is at location 0x40. Also,
assume that all BCD numbers are in the valid range of 0 - 9.

For example, if BCDH = 2, BCDM = 4 and BCDL = 3, then your program should do the math to store the
value D'243' in location Result. This can be done by writing the code to perform the following
operation

Result = BCDL + BCDM x 10 + BCDH x 100

You are required to use modular programming in your code.

Perform simulation after entering some values for BCDL, BCDM and BCDH and show the results to the
supervising engineer. You will need to watch the variables BCFL, BCDM, BCDH and Result.

Copy and paste your code here.

University of Jordan
School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Experiment 3: Basic

Embedded System Analysis

and De51gn

Objectives

The main objectives of this experiment are to familiarize you with:
+¢ Program flow control instructions
++ Conditional and repetition structures

+¢ The concept of modular programming

%+ Macros and Subroutines
Pre-lab requirements

Before starting this experiment, you should have already familiarized yourself with MPLAB software and
how to create, simulate and debug a project.

Written by Eng. Enas Jaara and Dr. Ashraf Suyyagh - Revised by Prof. Iyad Jafar

1. Starting-up System Design

When we attempt to design a system that is required to perform complex tasks, it is essential that we
think about the design flow and establish an overall system design before immediately jumping into
implementation and coding in order for the program be written flawlessly and smoothly and the system
functions correctly. In this way you don't waste time writing a flawed incomplete program, or which
addresses the wrong problem or which is missing some flow scenarios.

A well-established diagramming technique is the flowchart. A flowchart is a schematic representation of
an algorithm, showing the steps and operations in the algorithm using different shapes that are connected
using unidirectional arrows to show their sequence. Flowcharts are used in designing and/or
documenting programs. As programs get more complex, flowcharts help us follow and maintain the
program flow. This makes a program easier to write, read, and understand. Other techniques used are
state diagrams which are not covered in this course.

A good practice in designing complex systems is to break them into smaller pieces where each carries out
few simple related tasks of the overall system. Thus, the system is built from these simple subsystems. In
this approach, you need only to care about how these subsystems interface with each other. As you
learned in Experiment 2, subroutines allow the programmer to divide the program into smaller parts
which are easier to code. In system design methodology, this is called the “Divide and Conquer” approach.

Generally, the basic steps in system design are:

Step 1: Requirements Definition
1. Reading the problem statement for what is needed to do, divide if it is complex.
2. What do I need to solve? Should I do it in software or hardware?
3. Determine the inputs and outputs for the hardware.

Step 2: System and Subsystem Design
4. Partition overall architecture into appropriate sub-systems.
5. Draw a detailed flowchart for each sub-system.

Step 3: Implementation
6. Translate flowcharts into code.
7. Integrate subsystem into one code/design.

Step 4: System Testing and Debugging
8. Run the program/hardware and see if it works correctly. If not, attempt to fix the program

by reviewing the above steps and refining your design along with it.

The above steps prove essential as programs get harder and larger. Next, we will present a real life
example from the industrial automation field to demonstrate the design process.

2. Design Example - An Industrial Filling Machine

Problem Statement

We are to design an embedded system which controls a filling machine that works as follows. Empty
bottles move on a conveyer belt. When a bottle is detected, the conveyor belt stops and a filling pump
starts working for some time to fill the bottle. When the bottle is filled, the total number of filled bottles
is increased by one and is shown on a common cathode 7-Segments display. Afterwards, the conveyor
belt starts again and the machine does the same thing for the next bottle and so on. When the total number
of bottles reaches nine, the machine stops for manual packaging. At this phase, one LED lights on an 8-
LED row and moves back and forth. The conveyor belt does not start again until the resume button is
pressed. Moreover, the LED array turns off. Figure 1 shows an example of the filling machine.

Figure 1. An industrial filling machine

In order to design this system and determine the required hardware and their role as input or output,
we will follow the steps listed previously.

Step1: Requirements Definition and Analysis

To analyze the system, let's remember the following:

Y/
°

@,
0.0

Y/
°

An Output in embedded system means a signal need be sent from the PIC to external hardware
for control purposes.

An input in embedded system means a signal is received from external hardware into the PIC for
processing.

Processing in embedded system means a certain code which does the required job.

Accordingly, and based on the problem statement, we can identify the following operations:

1.

The empty bottles move on a conveyer belt and when a bottle is detected, the conveyor belt stops.

This implies that:

+¢ There is a motor which controls the conveyor “conveyor motor”. The PIC should control the
motor. So, there we need an Output to control the motor.

+ There is a sensor which detects the presence of a bottle “bottle sensor”. The PIC should read
the sensor reading. So, we need an Input.

A filling machine starts filling the bottle for a specified period of time after which the filling

machine stops. This implies that:

¢ There is a pump/motor which is turned on/off to fill the bottle “filling motor”. The PIC should
control the pump. So, we need an Output.

“* We need a mechanism to calculate this time period. This is Processing done by the PIC. Can
be done using hardware timers or software delay loops.

The total number of filled bottles is increased by one and shown on a common cathode 7-
Segments display. This implies that:

+ We need some sort of a counter. Reserve a memory location (GPR) in the PIC

+* We need to output the value of this counter to a 7-segment display. Output

The conveyor belt starts again and the machine does the same thing for the next bottle and so on.
When the total number of bottles reaches nine the machine stops for manual packaging. This

implies that:
+ We need to check the counter value continuously. This is Processing done by the PIC.

When the number of bottles is 9, one LED lights on an 8-LED row and moves back and forth. Also,
the conveyor belt does not start again until the resume button is pressed. When the button is

T

pressed, the LED array turns off and the system restarts the operation. This implies that:

R/

% We need a code to control the LED lights. The PIC should control the LEDs. So, we need an
Output for each of these 8 LEDs.

«» We need a mechanism to check for the resume button key press. The PIC should read the
button. So, we need an Input.

As you have seen above, we need to interact with external components; like the motors, 7-Segments
and the LEDs (output devices), as well as s ensors and switches (input devices). Almost any embedded
system needs to transfer digital data between its CPU and the outside world. This transfer achieved

through input /output ports.

A quick look to the 16F84A or 16F877A memory maps reveals multiple [/O ports: PORTA and PORTB
for the 16F84A, and the additional PORTC, PORTD and PORTE for the 16F877A. These ports are general-
purpose bi-directional digital ports. Each port is associated with a direction register called TRISx that
controls the direction of PORTx pins. A logic one in bit position k of TRISx register configures pin k of
PORTx as input. On the other hand, if this bit is 0, the pin is configured as output. A pin can be configured
as input or output an any instant of time, but not simultaneously. Figure 2 shows an example of
configuring the pins in PORTA. Also, Table 1 shows some examples on how to configure the ports in
software.

MICROCONTROLLER

4 (ofof[t]1] o]]lo]l1] meacoa
~ D

CPU

Figure 2. Configuring pins in PORTA.

Table 1. Examples on configuring ports in software

movlw 0xOF clrf TRISC clrf TRISD movlw B’00110011’
movwf TRISB comf TRISD, F movwf TRISB

The high nibble of | Whole PORTC as Whole PORTD as input | Bits 2, 3, 6, 7 as output
PORTB is output, low | output Bits 0, 1, 4, 5 as input
nibble is input

Note on PORTA and PORTE:
As you remember from the Embedded Systems course, PORTA and PORTE pins can be used as analog
inputs and in this case they are connected to the A/D converter. In order to specify whether these pins
are digital or analog, we need to configure the bits in the ADCON1 register (Refer to the datasheet for
more details on choosing the values for ADCON1). For example, to configure all the pins in PORTA as
digital, we can write:

BANKSEL ADCON1

MOVLW 06H ; set PORTA as general

MOVWF ADCON1 ; Digital I/O PORT

R

How to decide whether microcontroller’s ports must be configured as inputs or outputs?

Input ports “Get Data” from the outside world into the microcontroller while output ports “Send

Data” to the outside world. For example:

« LEDs, 7-Segment displays, motors and LCDs that are interfaced to the microcontroller ports
should be configured as output.

+ Switches, push buttons, sensors, keypad and LCDs that are interfaced to microcontroller’s ports
should be configured as input.

In the system under consideration, we will use the following configuration:
Inputs:
+ RA2: Bottle sensor
+ RA3: Resume button
Outputs:
+ RBO to RB7: LEDs array
+» RCO0: Machine motor ON/OFF
+ RC1: Filling machine ON/OFF
+ RDO to RD6: 7-Segments outputs from

“_n “«__n

a” to “g”, respectively

Step 2: System and Subsystem Design

Divide the overall system into appropriate sub-systems. The design of a subsystem includes:
+» Defining the processes/functions that are carried out by the subsystem.

@,

+ Determining the input and output of the subsystem (Subsystem Interface).

A good practice in writing programs for embedded systems is to have “Initial” and “Main” subroutines
in the program. The initial subroutine is used to initialize all ports, SFRs and GPR’s used in the program
and thus is only executed once at system startup. The Main subroutine contains all the subroutines
which perform the functions of the system. Many embedded applications require that these functions
to be performed repeatedly; thus the program usually loops through the Main subroutine code infinitely.

Note: When designing a system, you should not expect to get the same design that others get. Each one
of you has her/his own thinking style and therefore designs the system differently; some might divide
a certain problem into two subsystems, others into three or four. As long as you achieve a simple, easy
to understand, maintainable and correct fully working system, then the goal is achieved! Therefore, the
following subsystem design of the above problem is not the only one to approach and solve the problem.
You may divide your subsystems differently depending on the philosophy and system structure you
deem as appropriate.

Step 3: Implementation

Based on the analysis of the system operation we obtained in Step 1 and Step 2, we can visualize the

general operation of the system in the flowchart shown in Figure 2. As we mentioned earlier, it is good

practice to divide the tasks in the system into subroutines. In our design, we decided to distribute these

tasks to five main subroutines as shown in Figure 2. These subroutines are:

« Initial Subroutine: it configures the ports and starts the conveyer belt.

+ Update_Seven_Seg subroutine: reads the total number of filled bottles and converts it to seven
segment code.

+ Test_and_Process subroutine: displays the number of bottles on the 7segment, waits for bottle,
stops the conveyor, fills the bottle, and restarts the conveyor.

% Test_Resume subroutine: checks if total number of filled bottles is nine. If so, it stops the
machine and invokes the LEDs subroutine.

« LEDs: moves the LED in the LED array back and forth and tests for pressing the resume button
press.

Initialize Ports and Start Conveyer

il

Read Number of Bottles and Convert to 7-Segment Code

il

Display Number of Bottles on 7-Segment Display

No

Bottle
Detected?

Yes

2

Stop Conveyer and Start Filling Pump to Fill the Bottle

e No

Time to Fill is
Over?

Yes

Stop Filling Pump, Increment Number of Filled Bottles and Start Conveyer

Number of Filled

Bottles is 9?

Yes

Stop Machine

Rotate LED on LED Array

No

Resume
Button
Pressed?

7

— e —— —— —— — —— — — — — — — — — —

~——q---

Figure 2. Overall flowchart of the system.

Initial
Subroutine

Update_Seven_ Seg
Subroutine

Test_and_Process
Subroutine

Test_and_Resume
Subroutine

LEDs
Subroutine

In addition to these subroutines, we will need to generate time delay to wait for the filling pump to fill
the bottle and to move the LED on the LEDs array. For this purpose, we will define the Simplest_Delay
subroutine

Based on our analysis and design, the code of the Main program is given below. Note the sequence of
calling the subroutines and how the operation is repeated indefinitely. In the following, we will discuss
each of these subroutines in details.

Main
CALL Initial ; Initialize Ports, SFRs and GPR’s
Main_Loop
CALL Update_Seven_Seg ; Test the number of Bottles and displays it on the 7-
; Seg.
CALL Test_and_Process ; Keep testing the bottle sensor, if bottle found,
; process it,
; else wait until a bottle is detected
CALL Test_Resume ; Check if No. of bottles is 9, if yes test if resume button is
; pressed, else skip and continue code
GOTO Main_Loop ; Do it again

The Initial Subroutine

This subroutine is primarily used for configuring the ports as required and initializing the variables. The
code is given below.

Initial

CLRF BottleNumber ; Start count display from zero

BANKSEL TRISD ; Set register access to bank 1

CLRF TRISC ; Set up all bits of PORTC as outputs

CLRF TRISD ; Set up all bits of PORTD as outputs, connected to
; Common Cathode 7- Segments Display

CLRF TRISB ; Set up all bits of PORTB as outputs, connected to
; LED array

MOVLW 0x0C ; Set up bits (1-2) of PORTA as inputs; RA3:

MOVWEF TRISA ; resume button, RA2: bottle sensor, others not used

BANKSEL ADCON1

MOVLW 06H

MOVWF ADCON1 ;set PORTA as general Digital [/O PORT

BANKSEL PORTA

CLRF PORTB ; Initially, all LEDs are off

BSF PORTC, 0 ; Start conveyer motor

RETURN

The Update_Seven_Seg Subroutine

This subroutine returns the appropriate common cathode 7-Segments representation of the number of
bottles in order for it to be displayed by the consecutive subroutine. Clearly, the signals sent to the 7-
Segments display are not decimal values, but according to the 7-Segment layout (Refer to the
Hardware Guide for more information.). Accordingly, we have to convert the decimal number of
bottles found in the bottle counter BottleNumber to the appropriate common cathode 7-Segments
number representation. To do so we define the 7-segment representations of the decimal number 0-9
as constants and use a Look-up table to get the correct representation for each bottle number.

Update_Seven_Seg

Zero equ B:llOOOOOO: Movf BottleNumber, W
One equ B’11111001

Two equ B’10100100’ Addwf PCL,F
Three equ B'10110000' Retlw Zero
Four equ B'10011001' Retlw One
Five equ B'10010010' Retlw Two
Six equ B'10000010' Retlw Three
Seven equ B'11111000' Retlw Four
Eight equ B'10000000' Retlw Five
Nine equ B‘10010000’ Retlw Six

Retlw Seven
Retlw Eight
Retlw Nine

Figure 3. The Update_Seven_Seg Subroutine and the definition of the seven segment codes.

In our design, the 7-segment display is common-anode and is connected to PORTD such that RDO is
connected to segment a, RD1 is connected to segment b, and so on. So, in the beginning of our program
we define a set of 10 constants for the 7segment codes and assign them the values as shown in Figure 3.

The Test_and_Process Subroutine

This subroutine displays the current bottle count on the 7-segment display and tests if a bottle is present
or not. If a bottle is detected, the conveyor motor is stopped, the filling pump starts working for a
specified period of time to fill the bottle and then stops. Afterwards, the conveyor belt starts moving
again. Finally, the number of bottles is incremented by one. Figure 4 shows the flowchart of this
subroutine and the corresponding code. Note how the subroutine starts with the movwf PORTD to output
the 7-segment code to PORTD. The code is already in the Working register after calling the
Update_Seven_Seg subroutine.

Test_and_Process
Display Number of Bottles on 7-Segment Display movwf PORTD ; display on the 7-Seg
- poll btfss PORTA,2 ; Test the bottle sensor
goto poll
. bcf PORTC,0 ; stop conveyer motor
Detected? bsf PORTC,1 ; start filling motor
RA2=1? call Simplest_Delay ;Insert delay to
; fill bottle
Yj;s bcf PORTC,1 ; stop filling motor
bsf PORTC,0 ; start conveyer motor
Stop Conveyer Belt incf BottleNumber,F
1 return

Start Filling Pump

1

Wait Until Bottle is Filled

1

Start Conveyer

1

Increment Number of Bottles

1

Exit

Figure 4. Test_and_Process Subroutine.

The Test_and_Resume Subroutine

This subroutine checks if the total number of bottles has reached nine. If not, it will exit and return to the
main program to continue the operation. Otherwise, it stops the conveyer motor to package the filled
bottles manually. At this moment, one LED lights on an 8-LED-row and moves back and forth. The
conveyor belt does not start again until the resume button is pressed. These last two operations are
performed using the LEDs subroutine that is called inside this subroutine. The flowchart and the code for
the Test_and_Resume subroutine is given Figure 5.

Test_and_Resume
movf BottleNumber, w
sublw 9
BottleNum is 9? btfss STATUS' Z
goto finl ; return
call Update_Seven_Seg
Yes movwf PORTD ; display on the 7-seg
+ bcf PORTC,0 ; stop conveyer motor
Display 9 on 7-Segment Display bcf STATUS’ C
1 clrf BottleNumber ; Reset System
call LEDs ; rotate LEDs and check resume
Stop Conveyer Motor
; button
< finl
Turn on One LED on LED Array No return
v
Start Conveyer
v
Clear Number of Bottles to Start over
-
Exit

Figure 5. Test_and_Resume Subroutine.

The LEDs Subroutine

This subroutine lights one LED on an 8-LED-row and continuously moves it back and forth in this fashion.
In between, it checks the resume button. If pressed, the conveyor motor starts again and the LED array
turns off; else the LEDs keep rotating and the resume button checked. Figure 6 shows the flowachart and
code for this subroutine.

The Simplest_Delay Subroutine

This subroutine is used to generate a time delay for filling the bottle and controlling the motion of the
LED on the LED array. It is composed of two nested loops that decrement two counters; as we learned in
class. The code for this subroutine is shown in Figure 7.

Turn on the First LED

!

Insert Sufficient Delay to Make the

Activated LED Visible

!

Move the ON LED on Position to the Left

Isthe Resume
Button Pressed?
RA3 =17

No

IsC Flag=1?
(LED has been Shifted
8 times)

Yes
¥

Insert Sufficient Delay

1

Move the ON LED on Position to the Right

Is the Resume
Button Pressed?
RA3 =1?

No

IsC Flag=1?
(LED has been Shifted
8 times)

Turn on One LED on LED Array

Il

Start Conveyer Motor

i

Exit

LEDs

bsf PORTB, 0 ; turn on the 1st LED
Rotate_Left
call Simplest_Delay

rif PORTB, F

btfsc PORTA, 3 ; check Resume
button goto fin

btfss STATUS, C

goto Rotate_Left
Rotate_Right
call Simplest_Delay
rrf PORTB, F
btfsc PORTA, 3 ; check Resume
button
goto fin
btfss STATUS, C
goto Rotate_Right
goto Rotate_Left
fin
clrf PORTB ; turn off LED array
bsf PORTC, 0 ; start conveyer
motor
return

Figure 6. LEDs Subroutine.

10

Simplest_Delay
movlw OxFF

movwf MSD

clrf LSD
loop2

decfsz LSD, F

goto loop2

decfsz MSD, F
goto loop2
return
Figure 7. The Simplest_Delay Subroutine.

4. How to Simulate This Code in MPLAB?

Step4: System Testing and Debuggin

You have learnt so far that in order to simulate inputs to the PIC, you usually entered them through the
Watch window. However, this is only valid and true when you are dealing with internal memory registers.

In order to simulate external inputs to the PIC pins, we are to use what is called a Stimulus. The Stimulus
option is available in the Debugger menu as shown in Figure 8. When you select New Workbook, a new
window will appear where you can add the pins to stimulate and specify type action to happen on this
pion when stimulated.

In our system, we are observing two external inputs: The first one is the bottle sensor which is connected
to RA2. We will assume that the sensor generates a positive pulse when it detects a bottle. The second
input is the Resume button which is connected to RA3. Also, it is assumed that it generates a positive
pulse when it is pressed. In order to activate these inputs while simulating the program, follow the
following steps:

1. Select Debugger - Stimulus - New Workbook as shown in Figure 8. A stimulus window opens

| Debugger | Programmer Tools Configure Window Help

Select Tool] c
lect Too b eEBw®
Clear Memory L3
Bun Fa
Animate
Halt F5
Step Into " FAssuming a c_?c.a of

F230 *+ 32 * 123 = 1xl
Step Ower Fa

[-

Step Out :Not 1 Sec yet =7 Simulis - [Urided] |]
Re=set 3

:if one second passed Aeynch | Pin J Aegizle Aciens | Advanced Fin/ Aagaier | Clock Shmoks | Fegister Injscion | F
Breakpoints.., F2

Fue | FinJ/5FA | Aclion Width |Unils |Commerts / Message

StopWatch >

e e ol e kel e e o ke e e e el ol e e e e 3 |ANE Fuke High M o
Cornples Brezkpoints
Stimulus k Mew Workbook 1
Profile * Open Workbook
Clear Code Coverage Save Workbook h
Refrash PM Save Workbook As
Seffings... Close Workbkeock

Figure 8. Stimulus window.

11

2. Click on a cell under Pin/SFR and select the pin that you want to stimulate. Add AN2 and AN3
which correspond to RA2 and RA3, respectively. For both pins, specify the action to be Pulse High
under the Action column, under the Width column specify the width of the pulse to be 20, and
under the Unit write 20 (Check Figure 8). This implies that this pin will receive a positive pulse

with duration of 20 processor cycles when activated.

3. In the code of the program, place a breakpoint at the instruction BTFSS PORTA, RA2 inside the
Test_and_Process subroutine. This will allow us to change the reading of the bottle sensors during

program simulation.

4. In the code of the program, place a breakpoint at the instruction BTFSS PORTA, RA3 inside the

LEDs subroutine. This will allow us to change the reading of the bottle sensors during program
simulation.

5. Run your code, you will go to the First break point then press “Step Into” you will observe that
you have stuck in loop.

6. Now Press “Fire”, the arrow next to the RA2 in the Stimulus pin. What do you observe?
7. Now press “Step Into” again, observe how the value of BottleNumber change.

8. Press “Run” then “Fire” again, observe how the value in BottleNumber changes whenever you
reach the first breakpoint. Keep doing this until the program stops at the second breakpointinside
the LEDs subroutine.

9. Press “Step Into” you will observe that you have stuck in loop.
10. Now Press “Fire”, the arrow next to the RA3 in the Stimulus pin.

11. Now press “Step Into” again, observe how the value of BottleNumber changes to ZERO.

5. Simulation Using Proteus

Proteus PIC Bundle is the complete solution for developing, testing and virtually prototyping your
embedded system designs based around the Microchip Technologies TM series of microcontroller. This
software allows you to perform schematic capture and to simulate the circuits you design. Please to refer
to the “Introduction to Proteus.pdf” file to learn how to use Proteus to simulate the filling machine
example.

The complete code that control the system can be found in the “Experiment 3 Filling Machine Code.asm”
file and the Proteus circuit for the system is available in the “Experiment 3 Filling Machine Proteus
Circuit” file.

6. Building the Hardware of the System

Once you have designed your system and tested it, you will need to build it using actual hardware
components. This usually requires knowledge about the hardware components and how they can be
used, in addition to good fundamentals in circuits and electronics. The file “Guide to Hardware.pdf”
outlines the basic hardware components and some technical issues that you usually need to know in
order to build simple build embedded systems.

In order to give you some experience in this, the second part of this experiment is a simple exercise on
how to wire up a simple embedded system. The details of this part are in Labsheet 3B.pdf file.

12

Labsheet
3

University of Jordan
School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

........

M

J———

e | R 44

gt
- 4
4
diges dErEx

EETEN) ey

. »

Basic Emede nalyis and

Name:
Student ID:

Section (Day/Time):

COMPUTER NAME:

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING
DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet3: Basic Embedded System Analysis and Design

Name: Student ID:
Section:
Note: Before you start, you should read the tutorial on how to use The Proteus Program and
The Guide to Hardware Tutorial that are available on the website.

In this experiment, you are required to use a PIC16F877A microcontroller to design a simple
embedded system that has eight light emitting diodes (LED) two pushbuttons (START and
INCREMENT). The anodes of the LEDs are connected to PORTC while the pushbuttons are connected
to RBO and RB1 using pull-down resistors (Refer to the Guide to Hardware Tutorial).

The system supposed to control the LEDs as follows:

1. When the system starts, the LEDs are off and the system waits the user to press the START
pushbutton. Nothing will happen until the user presses the START button.

2. When the START pushbutton is pressed, the system will turn ON all the LEDs for some time
and then turn them off. Afterwards, it starts monitoring the second pushbutton which we will
call the INCREMENT button.

3. Whenever this button is pressed, the system increments internal variable VALUE by 50 and
displays it on the LEDs.

4. When the VALUE is greater than 155, the system flashes all LEDs 3 times, resets VALUE and
restarts its operation; i.e. it will wait for the START button to be pressed.

(Pre-lab)

1) Determine the required hardware and assign I/0 pins.

Inputs:

Outputs:

2) The Initial and Main Codes:

Your code should have at least 2 subroutines: Initial and Main subroutines. The Initial
subroutine is used to initialize all ports, SFRs and GPR’s used in the program and thus is only
executed on the system start up. The Main subroutine contains all the subroutines which
perform the functions of the system. In the space below, write the code of the Initial
Subroutine.

Initial

3) In addition to the Initial and Main subroutines, you will need a delay subroutine to control
the flashing of the LEDs when VALUE is greater than 50. You can use the Simplest Delay
subroutine given in Experiment 3. Write the code of this subroutine in the space below.

Simplest_Delay

4) After analyzing the system operation, draw the flowchart(s) of the main program and the
new subroutines that you will use.

In Lab

1)Write the code all subroutine and the main program. Note: The nature of the system requires
it runs continuously, the program code will loop through specific subroutines which
implement the system function.

In the space below, copy and paste the whole code of your program.

2) In order to test your program, you will use the Proteus circuit simulator. In this simulator,
you can draw the circuit of your system and load your code to test it. Please refer to the
Introduction _to _ Proteus tutorial that is available on the website.

For this experiment, we have prepared the circuit of the system in the Labsheet 3 Proteus
file. You can use this file to test your program; however, make sure to install the program on
your computer and practice building circuits in Proteus.

Note: You might need to insert a small delay in your code after you read the pushbuttons to

avoid reading them more than one time during simulation. You may use the Simplest Delay
subroutine or write a new one.

University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Objectives

To become familiar with HD44780 controller based LCDs and how to use them
Knowing the various modes of operation of the LCD (8-bit/4-bit interface, 2-lines/1-line, CG-ROM).
Distinguishing between the commands for the instruction register and data register.

Stressing software and hardware co-design techniques by using the Proteus IDE package to
simulate the LCD.

Written by Eng. Ashraf Suyyagh and Eng. Enas Jaara - Revised by Prof. Iyad Jafar

Introduction

A Liquid Crystal Displays (LCD) is a thin, flat display device made up of any number of color or
monochrome pixels arrayed in front of a light source or reflector. It is often utilized in battery-powered
electronic devices because it uses very small amounts of electric power. LCDs have the ability to display
numbers, letters, words and a variety of symbols. Figure 1 shows a typical LCD module. This experiment
teaches you about LCDs which are based upon the Hitachi HD44780 controller chipset.

LCDs come in different shapes and sizes in terms of number of characters and lines. Typical LCDs may have
8, 16, 20, 24, 32, and 40 display characters that are arranged in 1, 2 or 4 lines. However, all regardless of
the external shape of the LCD, they are internally built as a 40x2 format as shown in Figure 2. Each
of the small rectangles can be used to display some character as we will see later. The numbers shown in
the small rectangles are the corresponding RAM hexadecimal addresses that you need to write to in order
to write to that character. Figure 3 shows the relation between the character position and its RAM address
in the HD44780 controller based LCDs.

E
o
l
H
iy
E
N
——

A
EH
SN

o
EI
—

N
)
SIS
n

H

EH

=y

HH

~N ~N

B (=]

(g} (2]

HH a
:.._.

[10] [a2] [s2] [ss] [ae] [as] [36] [a7] [a8] [10] [3a] [18] [sc] [0] [ae] [a¢]
[so] [s] [s2] [s3] [se] [ss] [s6] [s7] [s8] [so] [sa] [se] [sc] [s0] [se] [5¢]
16 Characters x 4 Lines (SMC1640A or LM041L)

Figure 2: Different LCD modules shapes and sizes.

DisplayPositon | 1 [2 [3 [4 | 5 | 6 | | 39 | 40]
(Decimal)

RAM Address 00 [01 o2]o03]o5]o06] .. 26 27
(HEX) 40 | 41 | 42 [43| 45 [46 | . 66 67

Figure 3: Display address assignments for HD44780 controller based LCDs.

LCD Pin Out

Most LCD modules conform to a standard interface specification. A 16-pin access is provided with eight
data lines, three control lines, three power lines and two additional pins (L+ and L-) that are typically used
for backlight control purposes. Figure 4 shows the pinout of a 16-pin LCD and their description. Note that,
some LCDs are 14-pin and don’t have the L+ and L- pins.

PIN NO NAME FUNCTION
L+ Anode Background Light
L- Cathode Background Light
1 Ve Ground
2 Vdd +ve Supply
3 Vee Contrast
4 RS Register Select
5 R/W Read/Write
W-v-e190.90%001 20 10 00§ AN Y OXaTASSK 6 E Enable
» 7 DO Data Bit 0
55%%5%5%@%"35555 9 D2 Data Bit 2
@ >
EE 58 10 D3 Data Bit 3
g 11 D4 Data Bit 4
- 12 D5 Data Bit 5
13 D& Data Bit 6
14 D7 Data Bit 7

Figure 4: 16-Pin LCD pinout and description.

Note: The LCD in Figure 4 might differ from the actual LCD module. The order can be from left to right or
vice versa; therefore, you should pay attention. Pin 1 is marked to avoid confusion (printed on one of the

pins).
Powering the LCD

Powering up the LCD requires connecting three lines: one for the positive power VDD or VCC (usually +5V),
one for negative power (or ground) Vss. The Vee pin is usually connected to a potentiometer which is used
to vary the contrast of the LCD. In this experiment, we will connect this pin to ground. As you can see from
Figure 4, the LCD connects to the microcontroller through three control lines: RS, RW and E, and through
eight data lines DO through D7.

When powered up, the LCD display shows a series of dark squares. These cells are actually in their off state.
When power is applied, the LCD is reset; therefore, we should issue a command to set it on. Moreover, you
should issue some commands which configure the LCD. (See the table which lists all possible
configurations below in the code and the explanation to each field)

Interfacing LCD to PIC

Figure 5 shows an example of interfacing a 14-pin LCD to the PIC16F877A microcontroller. The data pins
are connected to PORTD, RA1 is connected to RS, RA2 is connected to R/W and RA3 is connected to E. Of
course, you can use different pin assignment to interface the LCD. Note: in this experiment, we will be only
writing to the LCD, so the R/W input is fixed to 0. Reading from the LCD is left to the students as exercise.

Communicating with the LCD

Using an LCD is a simple procedure once you learn it. Simply, you will place a value on the LCD lines DO-D7.
This value might be an ASCIlI value (character to be displayed), or another hexadecimal value
corresponding to a certain command. So, how will the LCD differentiate if this value on D0-D7 is

corresponding to data or command?

For this purpose, the Register Select (RS) input is used. When this input is set to 1 and the Enable (E)
input transitions from high to low, the LCD interprets the value on D0-D7 as data. On the other hand,
when RS is 0 and E transitions from high to low, the LCD considers the value on the data pins as a
command. Figure 6 shows this simple operation. To implement the operation of the operations shown in

LCD1
LhEL

AECOEFGHI JKLMHOF

LI

284 23, moemasas
AAACAANEANAAAET

" uln
& koo -

&

05CHTLKIIT RE1

[
a[n

RASIANAIS SAC20UT

RCUTIOECCR:

e |
2
:

RO W
Ta] RENANSIR RCICCH
—— REZ/ANTICS RCSCHIECL [+
1 FiCAs DVSDA (=
MC LR AP THY RC&500
RCHTHLE [

RCT/RHIT

RO7/PSFT

= osciscwn RBO/INT (=

RBZ (o

RAC/AD REZPOM

324 AT R

L ReRANZAR EFDWRE RBS [

o RecANzARER: RB6/PGC |
S RAd/TOC KLC10UT RB7/PGD

RCO/TIOS0/TICK |

ROD/PSAD (=

Tl 2Tl =[T .
Pttt o et e 5
[F| R] =]

=]

RO1PSPT
RO2/PSR2 o

ROPSPS (o
RO4/FSPY (5

ROS/PSPS (—

ROG/PEPE

PICIBFETA
<TEHT >

Figure 5: A typical interfacing between a PIC16F877A and an LCD module

Figure 6 in software, we will use two subroutines: send_char and send_cmd.

The send_char subroutine is supposed to perform the following operations to send the data (character) to

Command

RS R/W E D7

Binary

D6 D5 D4 D3| D2 D1

Write Data to CG or DD RAM

1

0

Y

ASCIl Value

Write Command

0

0

2

Refer to the Command Table below

Figure 6: Necessary control signals for Data/Commands

Output the data to D0O-D7 lines. It is assumed that the data is in W and the data pins are connected
Set Register Select (RS) to 1 to tell the LCD that we are outputting data. RS is connected to RA1, so

Generate a falling edge on the Enable (E) input to trigger the LCD to read the data pins. The E input

is connected to RA3. So, RA3 is set 1 for some time then set to 0 after some delay.

the LCD:
1.
to PORTD.
2.
RA1 should be set to 1.
3.
4,

Generate a delay to give LCD the time needed to display the character.

Accordingly, the code for this subroutine is as follows:
send_char

movwf PORTD
bsf PORTA, 1
bsf PORTA, 3
nop

bcf PORTA, 3
bcf PORTA, 2
call delay
return

Similarly, the send_cmd subroutine is supposed to perform the following operations to send a command to
the LCD:
1. Output the command to D0-D7 lines. It is assumed that the data is in W and the data pins are
connected to PORTD.
2. Set Register Select (RS) to 0 to tell the LCD that we are outputting data. RS is connected to RA1, so
RA1 should be set to 0.
3. Generate a falling edge on the Enable (E) input to trigger the LCD to read the data pins. The E input
is connected to RA3. So, RA3 is set 1 for some time then set to 0 after some delay.
4. Generate a delay to give LCD the time needed to execute the command.

Accordingly, the code for this subroutine is as follows:
send_cmd

movwf PORTD
bsf PORTA, 0 ; the only difference from the send_char subroutine
bsf PORTA, 3
nop
bcf PORTA, 3
bcf PORTA, 2
call delay
return

Note that the only difference between the two subroutines is in the highlighted instruction that controls
the value of the RS input.

Displaying Characters on the LCD

All English letters and numbers as well as special characters, Japanese and Greek letters are built in the
LCD module in such a way that it conforms to the ASCII standard. In order to display a character, you
only need to send its ASCII code to the LCD which it uses to display the character. To display a character on
the LCD, simply move the ASCII character to the working register (for this experiment) then call send_char
subroutine.

Figure 7 shows the character map for the LCD that we are using in this experiment. Notice that from
column 1 to D, the character resolution is 5 pixels wide x 7 pixels high (5x7) (column 0 is a special case, it
is 5x8, but considered as 5x7, more on this later). On the other hand, the character resolution of
columns E and F is 5 pixels wide x 10 pixels high (5x10). We should change the resolution if we are to use
characters from different resolution columns. This can be done using a command discussed later.

Sending Commands to the LCD

There are many commands that you need to be aware of in order to control the LCD. The list, format, and
options of these commands is shown in Figure 8. All the commands are 8-bit. To issue any of these
commands, we determine the values of its parameter(s) and then issue the send_cmd command. In the
following, we will discuss these commands in details.

Clear Display Command

Moving the value 01 to the working register followed by call send_cmd will clear the LCD display. However,
the cursor will remain at its last position, so, any future character writes will start from the last location. To
reset the cursor position, use the Display and Cursor Home command.

=l 0|1 3 516 8|9|A|B|C|D|E|F

u_-: XO00R0001 10§00 101001 11100000 10100V Y 1100110 i 10 e Y

0= kil P = aa i | A [Fl
«w - - q) .l '-b -

HERE R o | XL E)
[ii o o p—

lE TZERER |

3 & Sic 3% AR

E T

) .
=
- -5

w
£

~ll

PN
-‘,.

. u
IS

LOE 000 0 T R
el o e o e s N R
™| o |:
xR

o 1] = [
5

4..]

~
sfal |5fs

'Dv
HEI

o] Foe]] P00 0]] e]

- L3) § Py e ;
81sl ¢ LA 1R £ [DFEMr
9| & 5 [5] [2 -1
HEINE v b 80 I I T LA T
[= -., @ = &
ME| el Jd|Z [J L] §|F
=, Hidi N =M= 1=
SlE] B IRITIRI | [+[¥E0f s
ClEl s <L |2 274
= — | | | =
QE =M \m ¥ @ =
= RN I - | -
BE RN s E L A
o o ™ e a1
A ol B) O [w27 [0 l
Figure 7: LCD character map.
§inary
Sommond D7 D6 D5 D4 D3 D2 D1 DO Fex
Clear Display 0 0 0 0 0 0 0 1 01
Display & Cursor Home 0 0 0 0 0 0 1 x 02 or 03
Character Entry Mode 0 0 0 0 0 1 1/D S 04 to 07
Display On/Off & Cursor 0 0 0 0 1 D U B 08 to OF
Display/Cursor Shift 0 0 0 1 D/C | R/L X x 10to 1F
Function Set 0 0 1 8/4 | 2/1 |10/7 X X 20 to 3F
Set CGRAM Address 0 1 A A A A A A 40 to 7F
Set Display Address 1 A A A A A A A 80to FF
1/D: 1=Increment*, 0=Decrement R/L: 1=Right shift, O=Left shift
S: 1=Display shift on, 0=0Off* 8/4: 1=8-bit interface®, 0=4-bit interface
D: 1=Display on, 0=0Off* 2/1: 1=2line mode, 0=1 line mode*
U: 1=Cursor underline on, 0=0ff* 10/7: 1=5x10 dot format, 0=5x7 dot format*
B: 1=Cursor blink on, 0=0Off*
1=Display shift, 0=Cursor move x = Don't care * = Initialization settings

Figure 8: LCD command control codes.

Display and Cursor Home Command

Resets cursor location to position 00 of the LCD screen (Figure 3). Future writes will start at the first
location of the first line.

Character Entry Mode Command

This command has two parameters 1/D and S:
e 1/D: By default, the cursor is automatically set to move from location 00 to 01 and so on
(Increment mode). Suppose now that you are to write from right to left (as in the Arabic language),
then, you have to set the cursor to the Decrement mode, i.e. the D1 bit in the command should be 0.
e S: Accompanies the D/C parameter that is explained later.

[6

Display On/OFF and Cursor Command

This command has three parameters:
e D: Turns on the display (when you see the black dots on the LCD, it means that it is POWERED on,

but not yet ready to operate). In other words, this command activates the LCD in order to be ready
to use.

e U: This command displays the cursor in the form of a horizontal line at the bottom of the character
when its value 1 and turns the cursor off when it is 0.

e B:If the underline cursor option is enabled, this will blink the cursor if high.

Display/Cursor Shift Command

All LCDs based on the HD44780 format - whatever their actual physical size is - are internally built to be
40 characters x 2 lines with the upper row having the display addresses 0-27y (40 Characters) and the
lower row from 40y -674 (40 characters).

Now, suppose you bought an LCD with the physical size of 20 char. x 2 lines. When you start writing to the
LCD and the cursor reaches locations 14y, 154, 164, ..., you will not see them! BUT, don’t worry, they are
not lost. They were written in their respective locations but you could not see them because your bought
LCD has 20 visible Characters wide from the outside and 40 from the inside. All you have to do is shift the
display. To do that, use the Display/Cursor Shift command as follows:

1. Determine the direction of the shift using the (R/L) bit. This bit controls the direction for shift
(Right or Left).

2. Specify the value of the D/C bit in the command. If this bit is 0, the display is not shifted and the
cursor moves one position to right or left according to R/L bit. If this bit is 0, the display is shifted
to right or left to show the hidden characters. Note that you need issue this command multiple
times in order to shift the display by multiple locations!

Function Set

This command controls different features of the LCD and it has three parameters:

e 8/4: this parameter specifies whether the LCD is receiving data as eight bits or four bits. In 8-bit
mode, the data is sent as 8 bit on D0-D7 lines. When 4-bit is used, the data is sent on D4-D7 lines
in two stages. The 4-bit is useful when interfacing the LCD to save output pins of the
microcontroller.

e 2/1: this parameter specifies the line mode. When it is set to 1, then you can use both lines on the
LCD. Otherwise, you can use the upper line only.

e 10/7: this parameter control height of the displayed character, i.e. the Dot format. The LCD
supports 5x7 or 5x10 format such that:

o 5x7 format (Default) is used whenever you use the characters found in columns 1 to D in
the character map shown in Figure 7.

o 5x7 format is also used whenever you use the built in characters in CG-RAM (EVEN
THOUGH THE CG-RAM CHARACTERs ARE 5X8!!!)

o 5x10 format is only used when displaying the characters found in columns E and F in the
character map in Figure 7.

Set Display Address Command

This command allows you to move the cursor to whichever location you want. The syntax of the command
is 1TAAAAAAA. The A’s in the command are used to specify the address of the character position on the
display. For example, suppose you want to start writing in the middle of 20x2 display (visible width of the
LCD screen is 20), then, from Figure 2 you will observe that location 0Ay is approximately in the middle, so

you replace the A’s with 0Ay and the command becomes (10001010); or 8 Au. Another example is when
you want to start writing starting at the second line, which is location 40y, then, then the you should issue
the command is (11000000), or COy. With the command in hand, you can put it in W and send it to the LCD
and calling the send_cmd subroutine.

Example

The following code is an example of initializing the LCD and using it to display the 26 English characters.
Note the initialization of the LCD in the Initial subroutine. After initialization, the program starts by loading
letter A in the working register and sending it to the LCD. Afterwards, it loops through the other characters
by adding 1 to the tempChar variable to move to the next English character. This operation is performed in
main program in the CharacterDisplay loop. Once all characters are sent to the LCD, you will see the first
20 characters only since the display is 20x2. To see the remaining characters, you need to shift the screen
continuously. This is done by issuing the shift display command infinitely in the MainLoop loop in the
main program.

1 ;***
2 ; EXAMPLE CODE 1

3 ;***
4 | ; This code displays on the upper row of the LCD the 26 English letters in alphabetical order

5 ; The code starts with LCD initialization commands such as clearing the LCD, setting modes and

6 ; display shifting.

7 s

8 ; Outputs:

9 ; LCD Control:

10 | ; RA1: RS (Register Select)

11 |; RA3:E (LCD Enable)

12 | ; LCD Data:

13 |; PORTD 0-7 to LCD DATA 0-7 for sending commands/characters
14 | ; Notes:

15 | ; The RW pin (Read/Write) - of the LCD - is connected to RA2

16 | ; The BL pin (Back Light) — of the LCD — is connected to potentiometer

17 ;***
18 include "p16f877A.inc"

19 ;***
20 cblock 0x20
21 tempChar ;holds the character to be displayed
22 charCount ;holds the number of the English alphabet
23 Isd ;Isd and msd are used in delay loop calculation
24 msd
25 endc
26 ;***
27 | ; Start of executable code
28 org 0x000
29 goto Initial

30 ;***
31 ; Interrupt vector

32 | INT_SVC org 0x0004

33 goto INT_SVC

34 ;***
35 | ; Initial Subroutine

36 | ; INPUT: NONE

37 | ; OUTPUT: NONE

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

; RESULT: Configure 1/0O ports (PORTD and PORTA as output, PORTA as digital)
; Configure LCD to work in 8-bit mode, with two lines of display and 5x7 dot format.
; Set the cursor to the home location (location 00), set the cursor to the visible state
; with no blinking
;***
Initial

Banksel TRISA ;PORTD and PORTA as outputs

Clrf TRISA

Clrf TRISD

Banksel ADCON1 ; configure PORTA as digital output

Movlw 07

mowf ADCON1

Banksel PORTA

Clrf PORTA

Clrf PORTD

movlw d'26'

Movwf charCount ; initialize charCount with 26 Number of Characters in the English language

Movlw 0x38 ; 8-bit mode, 2-line display, 5x7 dot format

Call send_cmd

Moviw 0x0e ; Display on, Cursor Underline on, Blink off

Call send_cmd

Movlw 0x02 ; Display and cursor home

Call send_cmd

Movlw 0x01 ; clear display

Call send_cmd

o 3k 3k 3k 3k sk 3k sk 3k sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk 3k sk ok sk sk sk 3k ok sk sk sk sk >k 3k ok sk sk sk sk 3k 3k sk sk sk ok ok sk sk sk sk ok sk sk sk sk sk kosk sk sk sk sk kok

’

; Main Routine

o 3k 3k 3k 3k 3k 3k >k 3k sk sk sk 3k sk 3k sk sk sk sk sk ok sk sk sk 3k 3k sk sk sk sk sk 3k sk sk sk sk 3k 3k sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok ok sk sk sk sk ok ok sk sk sk ok sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk
’

Main
Moviw 'A'
Movwf tempChar
CharacterDisplay

« 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k >k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k 3k 3k >k %k 3k >k 3k 3k 3k 3k 3k %k >k 3k 3k 3k 3k 3k >k %k 3k >k 3k 3k 3k 3k 3k >k 3k %k >k 3k 3k 3%k 3%k %k %k %k 3k 3k %k >k Kk k kk
’

Call send_char

Movf tempChar, w

Addlw 1

movwf tempChar

movf tempChar,w

decfsz charCount

goto CharacterDisplay
Mainloop

Movlw 0x1c

Call send_cmd

Call delay

Goto Mainloop
send_cmd

movwf PORTD

bcf PORTA, 1

bsf PORTA, 3

nop

bcf PORTA, 3

bcf PORTA, 2

call delay

return

; Generate and display all 26 English Letters

; ‘A’ has the ASCII code of 65 decimal (0x41), by

; adding 1 to it we have 66, which is B. Therefore, by
; continuously adding 1 to tempChar we are cycling
; through the ASCII table (here: alphabets)

; This command shifts the display to the right once

; This loop makes the character rotate continuously

; Refer to table 1 on Page 5 for review of this subroutine

[9

93 | send_char

94 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
95 bsf PORTA, 1
96 bsf PORTA, 3
97 nop

98 bcf PORTA, 3
99 bcf PORTA, 2
100 call delay
101 return

103 | delay

104 movlw 0x80
105 movwf msd

106 clrf Isd

107 | loop2

107 decfsz Isd,f
109 goto loop2
110 decfsz msd,f
111 | endLlcd

112 goto loop2
113 return

115 End

116

Generating and Storing Custom Characters Using the CGRAM

The character map of the LCD that is shown in Figure 7 contains the English and Japanese characters,
numbers, symbols and special characters. Now, suppose you want to display a custom character that is not
shown in the table such as an Arabic letter, is that possible?

If you check the character map in Figure 7, you will see that the locations under column 0 are labeled with
CG(1) to CG(8). These locations are reserved to store custom characters that a user may wish to use, such
as the Arabic characters. Notice that despite that there are 16 locations under column 0, you can only use
the first 8 locations as the remaining are mirrors of the first.

Given these locations, how can we generate the characters and store them?

The first step is to draw the character. This is actually a fun thing to do. Simply, draw a 5x8 grid as shown
in Figure 9(a) and then start drawing your character inside it by shading the cells. Figure 9(b) shows and
example of drawing a stickman character inside the grid. Next, add three columns to the gird and replace
put 1 in the shaded squares and 0 in empty squares as shown in Figure 9(c). Each of the rows in the 8x8
grid is a byte that is to be stored in the LCD memory. The hexadecimal value of each row is shown in
Figure 9(d).

Once we have the values to be stored, the second step is to store it in one of the CG RAM locations. To do
so, we need to specify which of the CG locations we want to use. This is done using the Set CG-RAM
Address command. The syntax of this command is 0144A4AAAA, where AAAAAA is the starting address of
the CG location.

10

B4 | B3 | B2 | B1 | BO

~
()
(351
o~
w
N
[y
o

Value (H)
0x0E

0x11
0x0E
0x04
0x1F
0x04
0x0A
0x11

(b) (©) (d)

Figure 9: Steps to draw a stickman.

olo|o|o|lo|lo|lo|o|w
olo|o|o|lo|lo|lo|o|w
olo|o|o|lo|lo|lo|o|w
==l == =0
olR|olRk|lolR|lolk|w
oloRikP(P|olF|w
olR|lolR|lolR|lolr|w
== == =0

For example, if we want to store the character we generated previously in CG(0), we issue the command
01000000 or 0x40 to the LCD using the send_cmd subroutine. However, if we want to store it in CG(1), we
need to skip eight locations and issue the command 01001000 or 0x48. This is necessary as each character
is actually eight bytes, so the next character in the CG RAM starts after eight bytes. Figure 10 illustrates
this idea. Note how CG(2) starts at 0x48 and CG(7) starts at 0x78.

Address Data Address Address
e hex (binary) e e
40 48 78
41 40 79
42 S Ta
43 4B Fi=
a pr: (— 7
35 SO TD
48 4E 7E
47 000100 4F TF
User-defined User-defined User-defined
graphic #1 graphic #2 graphic #7

Figure 10: Storing the character in CG RAM.

The third step after specifying the CG RAM address is to send the 8 bytes that we obtained using the
send_char subroutine as shown in the code below.

Movlw 0x40 ; Here it is address 0x00 in Figure 8 which transforms into

Call send_cmd ; command 0x40

Movlw 0X0E ; Sending data that implements the Stick man

Call send_char ; Notice the address where to store the character in CG-RAM

Movlw 0X11 ; is a command thus use send_cmd, whereas the

Call send_char ; data bits of the stickman are sent as Data

Movlw 0X0E ; using send_char

Call send_char

Movlw 0X04

Call send_char

Movlw 0X1F

Call send_char

Movlw 0X04

Call send_char

Movlw 0X0A

Call send_char

Movlw 0X11

Call send_char

11

Once the character is stored in the CG RAM, we can display it on the LCD by simply calling the send_char
subroutine after placing the address of the CG character in the working register.

The following example shows how to store two stickman characters and display them on the LCD in
animated fashion as if the stickman is moving. There are two subroutines to store the two characters in
the CG RAM; DrawStickl and DrawsStick2. Once the characters are stored, the program continuously shows
them at the same position on the LCD in the Main loop. Note how the LCD has to be cleared after storing
the characters in the CG RAM. Also, note how we send the command 0x02 after displaying each character
in order to move the cursor to the first position.

1 « 3k 3K sk ok sk sk ok sk ok skosk sk sk sk sk sk skosk sksk sk sk sk kk
2 ;*

3 ; EXAMPLE CODE 2

4 « 3k 3K sk ok sk ok sk sk ok sk sk ks sk sk sk sk sk skosk sksk sk sk sk sk k.
5 ;*

6 ; This code stores two shapes of a stickman, one in location 00 (of Figure 8), and another at location
7 ; 01. The first stickman is written on the leftmost location of the upper line, the second stick man
8 ; shape is also written above the first one, then the first stick man is rewritten on the same location
9 ; that is display: first stickman shape = second stickman shape = first stickman shape and so on ..
10 | ; thus the stickman will appear as if it is moving! ©

11 ;

12 | ; Outputs:

13 | ; LCD Control:

14 | ; RA1: RS (Register Select)

15 | ; RA3:E (LCD Enable)

16 | ; LCD Data:

17 | ; PORTD 0-7 to LCD DATA 0-7 for sending commands/characters

18 | ; Notes:

19 |; The RW pin (Read/Write) - of the LCD - is connected to RA2

20 |; The BL pin (Back Light) — of the LCD — is connected potentiometer

21 ;**
22 * 3k

23 include "p16f877A.inc"

24 ;**
25 * 3k

26 cblock 0x20

27 Isd ;1sd and msd are used in delay loop calculation

28 msd

29 endc

30 ;**
31 k%

32 | ; Start of executable code

33 org 0x000

34 goto Initial

35 ;**
36 | **

37 | ; Interrupt vector

38 | INT_SVC org 0x0004

39 goto INT_SVC

40 ;**
41 | **

42 | ; Initial Routine

43 | ; INPUT: NONE

44 | ; OUTPUT: NONE

12

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

; RESULT: Configure 1/O ports (PORTD and PORTA as output, PORTA as digital)

; Configure LCD to work in 8-bit mode, with two lines of display and 5x7 dot format.
; Set the cursor to the home location (location 00), set the cursor to the visible state
; with no blinking
« 3% 3k 3k sk sk ok ok 3k 3k sk sk sk sk sk sk sk 3k sk sk sk sk sk sk sk 3k 3k sk sk sk sk sk sk 3k sk sk sk sk sk sk ok sk sk 3k sk sk sk sk sk sk 3k sk sk sk sk sk sk ok 3k 3k sk sk sk sk ok ok ok sk 3k sk sk sk sk ok ok sk sk sk skskok
.
Initial
Banksel TRISA ;PORTA and PORTD as outputs
Clrf TRISA
Clrf TRISD
Banksel ADCON1 ;PORTA as digital output
movlw 07
mowf ADCON1
Banksel PORTA
Clrf PORTA
Clrf PORTD
Movlw 0x38 ;8-bit mode, 2-line display, 5x7 dot format
Call send_cmd
Moviw 0x0e ;Display on, Cursor Underline on, Blink off
Call send_cmd
Movlw 0x02 ;Display and cursor home
Call send_cmd
Movlw 0x01 ;clear display
Call send_cmd
Call DrawsStick1 ;The subroutines draw and store the Stick man inside the
Call DrawsStick2 ;CG-RAM. This DOES NOT mean that the character is
;displayed on the LCD, it was only stored inside the CG-
RAM
;of the LCD.
Movlw 0x01 ;the datasheet says you have to clear display command
Call send_cmd ;storing the characters or the code will not work

« 3 3k 3k 3k 3k 3k 3k 3k 3k sk sk 3k 3k 3k ok sk sk 3k 3k 3k sk ok 3k 3k 3k 3k sk sk >k 3k 3k 3k sk sk >k 3k 3k 3k sk >k >k 3k 3k sk >k >k 3k 5k 3k 3k sk >k >k 3k 3k 3k >k >k >k 3k 3k %k %k %k 3k 3k ok %k %k >k 3k %k %k %k kok %k %k %k k
’

%k %k

; Main Routine
ekkkokkokkskkskkskokkskkskskskokskskskskskskokskskskskskskskskokskskskskokskoskskskskskskskokskskskskskskokskokskskskskskskskskskskskskskokskskskskkkk
’

%k
Main
Movlw 0x00 ;Display character stored in location 00 (Figure 8), which in
Call send_char ;this case is our first stickman in CG-RAM
Movlw 0x02 ;Cursor Home Command
Call send_cmd
Moviw 0x01 ;Display character stored in location 00 (Figure 8), which in
Call send_char ;this case is our first stickman in CG-RAM
Moviw 0x02 ;Cursor Home Command
Call send_cmd
Goto Main ; This loop makes the character rotate continuously

« 3 3k 3k 3k 3k 3k 3k %k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k %k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k 3k >k 3k 3k >k 3k 3k 3k 3k 3k >k >k 3k 3k 3k 3k 3k >k %k 3k >k 3k 3k 3k 3%k 3k 3%k %k %k 3k 3k 3k 3k 3%k %k %k %k %k %k %k k
’

%k %k

send_cmd
movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
bcf PORTA, 1
bsf PORTA, 3
nop

[13

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
145
146
147
148
149
150
151

o 3 3k 3k 3k 3k 3k 3k 3k sk sk 3k 3k 3k sk sk sk sk 3k 3k sk sk sk 3k 3k 3k sk sk sk ok 3k 3k 3k sk sk 3k 3k 3k 3k sk sk sk 3k 3k sk 3k 3k 3k sk 3k sk sk sk >k 3k 3k 3k sk 3k 3k sk sk sk sk ok ok sk ok ok sk ok sk sk sk sk kok sk sk sk k
’

k%

send_char

« 3 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 5k sk sk sk 3k 3k 3k sk ok ok 3k 3k 3k sk sk ok 3k 3k 3k sk sk >k 3k 3k 3k ok ok 3k 3k 3k sk sk >k 3k 5k 3k 3k sk >k >k 5k 3k 3k >k >k >k 3k 3k %k %k %k 5k 3k >k %k %k 5k 3k %k %k %k kok sk %k %k k
’

* %

delay

loop2

endLcd

« 3% 3k 3k 3k 3k 3k 3k %k ok >k 3k 3k 3k 3k 3k 3k >k >k 3k 3k 3k 3k 3k >k %k >k 3k 3k 3k 3k 3k 5k %k 3k >k 3k 3k 3k 5k 3k >k >k %k >k 3k 3k 3k 5k %k >k %k >k 3k 3k 3k 3%k >k %k >k >k 3k >k 3k 5%k 3k 5%k %k %k >k >k 3k 3k 3% %k %k %k %k %k %k k
’

%k %k

DrawStick1
man

« 3 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k sk sk sk 3k 3k 3k sk 3k 3k 3k 3k 3k sk sk ok 3k 3k 3k sk sk >k 3k 3k 3k sk 3k >k 3k 3k sk sk >k 3k 3k 3k 3k sk >k >k 3k 3k 3k >k 5k >k 3k 3k sk >k %k 3k 3k ok ok %k ok %k sk %k sk kok sk sk k k
’

%k %k

DrawsStick2

bcf
bcf
call
return

movwf
bsf

bsf
nop
bcf

bcf
call
return

movlw 0x80
movwf msd
clrf Isd
decfsz Isd,f
goto loop2
decfsz msd,f
goto loop2
return

Movlw
Call
Movlw
Call
Movlw
Call
Movlw
Call
Movlw
Call
Movlw
Call
Movlw
Call
Movlw
Call
Movlw
Call
Return

PORTA, 3
PORTA, 2
delay

PORTD ; Refer to table 1 on Page 5 for review of this subroutine
PORTA, 1
PORTA, 3

PORTA, 3
PORTA, 2
delay

Setting the CGRAM address at which we draw the stick

0x40 ; Here it is address 0x00 in Figure 8 which transforms
send_cmd ; into command 0x40

OXOE ;Sending data that implements the Stick man
send_char

0X11

send_char

OXOE

send_char

0X04

send_char

OX1F

send_char

0X04

send_char

0X0A

send_char

0X11

send_char

;Setting the CGRAM address at which we draw the stick

[14

152
153
154
155

man

o 3K 3k 3k 3k 3k 3k 3k sk sk sk sk 3k sk sk sk sk sk ok sk sk sk 3k sk 3k sk sk sk sk ok 3k 3k sk sk sk 3k ok 3k sk sk 3k >k ok sk sk 3k 3k >k sk 3k sk sk sk >k sk sk sk sk 3k >k sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk kok sk sk sk k
’

k%

End

;Here it is address 0x01 in Figure 8 which transforms
; into command 0x48
;Sending data that implements the Stick man

15

Labsheet
4

University of Jordan

School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Lt ™
-

i
“Hadhaana ™
1_ -

M

‘o
[»- §

-
-
s
-
s
"
=
-
~

il
Y

e e 1w

. |
R SN A e
Y b
" -

"
ol
=

Name:
Student ID:

Section (Day/Time):

COMPUTER NAME:

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING
DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet 4: LCD

Name: Student ID:
Section:

(Pre-lab) Part 1: Code Analysis and Understanding:
Answer the following questions regarding Code1:LDC1.asm of the experiment.

1. What changes to the instruction at line 57 are necessary in order for the cursor to be blinking?

2. What change(s) would you make to the code in order for it to start displaying the characters at
approximately the middle of the visible screen (i.e. at address 6)

(Pre-lab) Part 2: Suppose that you will store your Arabic characters at CG RAM Locations 0,
Location 1, Location 2 and location 3. Complete the modified main subroutine down with the
appropriate values in the Movlw instructions.

Main
Movlw ;Display character stored in location 00 which in
Call send_char ;this case is your first charcter in CG-RAM
Moviw
Call send_char
Movlw
Call send_char
Moviw
Call send_char
Goto Main ; This loop makes the character rotate continuously

(Pre-lab) Part 3: On the grid given below, shade the squares required to generate the first
letter of your name in Arabic. If the first letter of your name is (1), generate the character for
the second letter in your name. Then, write the instructions needed to store this character in
CG(1).

Draw your
character
below

Replace each shaded cell with
one and not shaded ones with
Zero.

Data in
Hex

B4

B3

B2

B1

B0

~
=)}
u1

B4

B3

B2

B1

B0

0x

0x

0x

0x

0x

0x

0x

(=] =] o] [e) o] o] {e] {e] |-
(=] le] o] [e)le] o] {e]] -
(=] le] o] [e)le] o] {e] {a] |-

0x

; Code to store the first letter of your name in Arabic

Part 3: Code Modification

In this part, you are required to modify the code in LCD2 - Animating Stickman.asm to display the first
Arabic letter of your name in a zigzag fashion as shown in the figure below. When the last position is
reached on the second row, the screen is cleared and the operation is repeated. You can use the
Embedded_Ex4 Proteus file to test your code. Assume that you are using 16x2 display.

Hints:
1. You will need to use the Set Display Address command to select the display location. Check
Figure 2 in the tutorial to know the addresses of the locations to be used.
2. For proper display of the pattern, it is advised to turn off the cursor when you initialize the
LCD in the Init subroutine.

3. To reduce the program size, you may write a lookup table that stores the display addresses
and call this table in a loop.

Ask your engineer to check the run.

R

University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Experiment 5: Using HI-TECH C

Compiler in MPLAB

Objectives
The main objectives of this experiment are to familiarize you with:
+ Writing PIC programs in C
¢+ Setting up MPLAB IDE projects to use the HI-TECH C compiler
+ Becoming familiar with HI-TECH C primitives, built-in function in use with 10/12/16 MCU
Family

Prepared by Eng. Enas Ja'ra - Revised by Prof. Iyad Jafar

Introduction

So far in this lab course, PIC assembly programming has been introduced; however, in practice, most of
the industrial and control codes are written in High Level Languages (abbreviated as HLL). The most
common of which is the C programming language. The use of high level languages is preferred for large
and very complex programs due to their simplicity which allows for faster program development, easier
debugging, and for easier future code maintainability. This will provide developers with shorter time to
market advantages in a world where competition is at its prime to introduce new commercial products.

On the other hand, HLLs assembled codes are often longer (due to inefficient compilers, aggressive and
advanced optimizing compilers are often used to yield better results). Longer codes have the
disadvantage of higher program memory requirement. This is crucial as most microcontrollers have
limited memory space. Additionally, longer codes imply longer time to execute. However, expert
assembly programmers can rewrite certain pieces of code in a very optimized and short fashion such
that they execute faster. This is very important especially when real time applications are concerned.
This direct use of assembly language requires that the programmer knows the problem in hand very
well and that one is experienced in both software and target microcontroller hardware limitations.
Hence, it is common for programmers combine C and Assembly language in the same developed source
code.

There are many C compilers available commercially, such as mikroC, CCS and HI-TECH. This experiment
introduces the “free” Lite version C compiler from HI-TECH software bundled with MPLAB, in contrast
to the Pro versions of compilers commercially available from HI-TECH and others. The compiler and
assembler don’t use aggressive techniques and the resultant assembly codes are larger in size.

The HI-TECH C Compiler

In order to use the HI-TECH C compiler to write your PIC programs in C language, it is assumed that you
have already installed it during the installation of MPLAB. Also, when write your program in high-level
C, you need to save the source code in a file with .C extension.

Given that, you can create a project in MPLAB following the same steps that you learned in Experiment
0. However, in Step Two, you need to select the HIGH-TECH Universal ToolSuite as the Active ToolSuite
in the dialog box as shown in Figure 1. Click Next.

r a
Project Wizard ' I @

Step Two: r‘h
Select a language toolsuite

Active Toolsuite: Microchip MPAS M T oolsuite v]

Taalsuite Contents | B Knudsen Data CCS

B Knudsen Data CCAE

Byte Craft &ssembler & C Compiler

ECS C Compiler for PIC10A 2.-’1 4/16/18/24/dsPIC30/dsPIC33
MPLIB [RWEEY HI.TECH Universal ToolSuite
I4R PIC18

. 4R Systems Midrange
Location Microchip MPASH Toolsite
1 C:M\Program Files'MicrochiphPAS M Suite\MPASMWIN exe Browse...

Staore tool locations in project

Help! My Suite lan't Listed! | Show all installed tooksuites

[<Back | nei> | [cancel | [Hep |

Figure 1: Selecting the HIGH-TECH ToolSuite.

Next, give a name to your project and specify its location in Step Three as shown in Figure 2. Click next
to move to Step Four where you can add the C file to your project as shown in Figure 3. Click next. If
you followed the steps correctly, you should see the project window with selected C file under the
Source File menu as shown in Figure 4. If you did not save your source file with .C extension, it will
appear under the Other Files menu as shown in Figure 5. To correct that, save the file in .C extension
and the right click on the Source File menu and select Add Files to select the add the new file.

Project Wizard b
Step Three: Eﬁ‘ '
Create a new project, or reconfigure the active project? /{'@ {

(®) Create New Project File

|D:\DneDnve - University Of Jardan'\DesktophC F'loiact\myFirstCF'o|| E Browse... i

Fieconfigure Active Project
Make changes withaut zaving

Save changes to existing project file

Save changes to anather project file

Brose...

< Back Next = Cancel Help

Figure 2: Step Three in creating the project.
r& First - MPLAB IDE v8.30 - First.mow ‘

File Edit Yiew Project Debugger Progre
bO=

El First.mow

Lo o]

BD First. mcp

BD Source Files
i..[Z] FirstCFile.c
22 Header Files
23 object Files
[:I Library Files
.21 other Files

Figure 4: Project window. (CORRECT)

-
Project Wizard

| =]

Step Four:
Add existing files to your project

- newl3-5

- Program Micro

{21 project

-1 projectd

= projectesp
FirstCFile.o
B FirstCFile.t:

. - verlog3 files T
< [m 3

-] mplabS.php_fil »

[+ MPLab_Intra f
1 new23 5 | A

-] PIC_HiTesh

C FirstCFile.c: | D:\EmbaddediMplab

[<Back [Nex

> | [Cancel | [Heb |

Figure 3: Step Four in creating the project.

.
First - MPLAB IDE v8.30 - First.mow ‘

b=

File Edit View Project Debugger Progr

2 First.mow

E=8 ECR =5

El[:l First.mcp™
..[_1 Source Files
(23 Header Files

; {3 Library Files
=1-[_1 Other Files

. [2] FirstCFile, et

‘ ¢ Symbals |

Figure 5: Project window with incorrect file
extension. (WRONG)

Building/Compiling C Programs in MPLAB

In this experiment, we will assume that you have prior knowledge in writing general C/C++ programs.
In this section, we will show how to write and simulate a general C program in MPLAB IDE.

Now, double-click on the C file that you have added to your project and write the following code.

#include <htc.h>

void main(void) // every C program you write needs a function called main.

{

This is a simple C program that has the main function. As you know, every C program should have the
main function. Also, notice how we have included the htc.h file, which is essential for the HI-TECH
compiler to work.

After writing this simple program, we should build the code to ensure that MPLAB IDE and HI-TECH C
are properly installed. Select Build from the Project menu, or choose any of MPLAB IDE’s shortcuts to
build the project. These shortcuts are circled in Figure 6.

{8 First - MPLAB IDE v830 ‘ o] e
File Edit View Project Debugger Programmer Tools Configure Window Help
0= S i o 2| (Debuy - EB =
Checksum: 0x840d
7] D\ AFirstCFile.c [r=rl-®-|EE3] | 5 Firstmow = =R E
void main (void -~
' ™ amEJ First.mcp
BD Source Files
- L[] Firstcrile.c

(22 Header Files
3 Object Files

m
c
=4
Q
2
i
7
2

PIC16FETTA W:0 zdcc

Figure 6: Shortcuts for building C-based project using HI-TECH compiler.

Once you build the project, you should see the output shown in Figure 7. The compiler has produced
memory summary and there is no message indicating that the build failed, so we have successfully
compiled the project. As we had with ASM files, if there are errors they will be printed in Build tab of
this window. You can double-click each error message and MPLAB IDE will show you the
offending line of code, where possible. If you do get errors, check that the program is as it is written in
this document.

7] Output [E=8 Hoh <)

Buld | Version Contral | Find in Files|

Executing: "CAFrogram Files\HIF-TECH Software\FICC\A.7 hinpicc.exe” —pass1 DAEmbadded\Mplab_L~
Executing: "CAProgram Files\HI-TECH Software\PICC3.7binypice.exe" -oFirst.cof -mFirst map —surmme
(1273) Omni=cient Code Generation not awvailable in Lite mode (warning)
HI-TECH C Compiler for PIC10-12-16 MCUs (Lite Mode) V9.70

Copyright (C) 2009 HMicrochip Technology Inc.

Henory Summary:

Program space u=ed Ah 103 of 2000h words (0.1
Data space u=ed Oh 03 of 170h bytes (0.0
EEFROM =pace u=ed Oh 0 of 100h bytes []
Configuration bits u=ed Oh 0y of 1h word []
ID Location space u=sed Oh 0y aof ih bytes 0.0y

m

Funning this compiler in PRO mode, with Omniscient Code Generation enabled.
produces code which is typically 40% smaller than in Lite node.
See http: smicrochip ht=oft com<portalspic_pro for nore information.

Loaded DAEmbaddediMplab_c\projectexpiFirst.cof.

prssssest Build succegsgful] eesssses =

q |~ [T G

Figure 7: Result of compiling the project.

Remember that BUILD SUCCEED DOES NOT MEAN THAT YOUR PROGRAM IS CORRECT! IT SIMPLY
MEANS THAT THERE ARE NO SYNTAX ERRORS FOUND, SO WATCH OUT FOR ANY LOGICAL ERRORS
YOU MIGHT MAKE.

Structure of C Program and Functions

When writing C programs, you need to remember the following general rules:

1. One-line comments start with 2 slashes: //
// This is a one-line comment

2. Multi-line comments line start with /* and end with */
/*
This is a comment.
This is another comment.
*/

3. Atthe end of each line with some instruction, a semi-colon (;) has to be placed.
a=a+3;

4. Parts of the program that belong together (functions, statements, etc.), are between { and
}.
void main(void) //Function

{
//Add code

}

In general, the ordered basic structure of the C program is as follows:

1. Libraries
Libraries such as htc.h, math.h and stdlib.h, are files that contain functions and constants which you
can use. In order to use these functions, you need to include the library that has this function in your
program. To do so, you write the statement #include <filename.h>. This statement should be placed
at the beginning of your code.

2. Global Variables
Global variables are those that you can use in the main function and other functions in your
program. Declaring the global variables should be done at the beginning of the code.

3. Function Prototypes
A C program has a main function and possibly other functions as well which a user may write after
the main function. In this case, and to avoid compilation errors, the user has to define these
functions before the main function. This is done by simply writing the function prototype before the
main program. The function prototype is the header of the function followed by a semicolon. You
can avoid using prototypes, although not preferred, by placing the entire function before the main
function.

4. Main Function
This is the function that is first called when the program execution is started. Every C program
must have a main function.

5. Functions Definition
Functions are the high-level representation of subroutines that you learned in assembly. The body
of the function contains a set of statements that can be executed from any place in your code and as
many times as needed. To define a function, you use the following syntax:

type identifier function name (type identifier identifierl, type identifier identifier2)

{

//The body of the function

return identifier

}

//only when return type is not void

The Type identifier of the function determines the type of the return value. It could be int, long, short,
char, void etc. The same thing applies to the input variables (identifiers) that you place between the
parenthesis. Remember that a function may return one value, but can take as many inputs as you want.
Table 1 shows some examples on defining functions.

To call a function, you simply use its name in your program as shown in Table 1. Notice how
tesFunction2 requires using an output variable to store the result and how the parenthesis are still
needed when calling testFunction3.

Table 1: Examples on Defining Functions

Function Definition

Comments

How to Call the Function?

void testFunction1(int x, int y)

The name of the function is

testFunction1(4,129);

{ testFunctionl. It accepts two integer
intk; inputs; x and y, and returns no values.
k=x; We express this by setting the type of
y=2+X; the function as void.
}
int testFunction2 (int x) The function name is testFunction2. It A = testFunction2(44);
{ has one integer input x and returns an
return x*x; integer value that is x*x.
}

void testFunction3 (void)

{

//some code

}

The function name is testFunction3.
This function accepts no input and
returns nothing. Such function might
be used to do initialization, print
something on the screen, or it may
modify global variables.

testFunction3();

Example 1 below is an example on writing a C program and function calc().

//Example Program 1

#include <htc.h> //Always include this library when using HI-TECH C compiler

//Declaring global variables

int a,b,c
char temp;

//Defining function prototypes

int calc (int p);

//Main function
void main(void)

{

A = calc(3); //write main body code

}

//Functions definitions
int calc (int p)

p=p+1;
return p;

//write function body code

Variables in C Language

Variables can be classified into two main types depending on their scope:

e Global Variables
These variables can be accessed (i.e. known) by any function included in the program. They are

implemented by associating memory locations with variable names. They do not get recreated
if the function is recalled. In Example 1, a, b, ¢, and temp are GLOBAL VARIABLES.

e Local Variables
These variables only exist inside the specific function that creates them. They are not visible or

accessible by other functions and to the main program. Local variables don’t exist once the
function that created them is completed. They are recreated each time a function is executed or
called. In Example 1, the variable p is a LOCAL VARIABLE.

In C Language, variables may take different types. Table 2 lists the available data types supported in C.
Example 2 below shows an example of defining different types of variables.

Table 2: Data Types in C Language

Type Size in Bits Possible Values
bit 1 bit 0,1
char 8 bits -128...127
unsigned char 8 bits 0...255
signed char 8 bits -128...127
int 16 bits -32k7...32k7
unsigned int 16 bits 0...65k5
signed int 16 bits -32k7...32k7
long int 32 bits -2G1..2G1
unsigned long int 32 bits 0...4G3
signed long int 32 bits -2G1..2G1
float 32 bits +107(£38)
double 32 bits +107(+38)

// Example Program 2
#include <htc.h>

char Ch;

unsigned int X;

signed int Y;

int Z,a,b, c; // Same as "signed int"
unsigned char Ch1;

bit S, T;

void main (void)

{
Ch="a';
X =-5;
Y =0x25;
7 =-5;
Ch1="b";
T =0;
S =81, //S=1 When assigning a larger integral type to a bit variable,
//only the Least Significant bit is used.
a =15;
b =0b00001111;
c =0x0F;
// a, b, c will all have the same value which is 15
}

C Operators

C Language supports many types of arithmetic, logic and relational operators. These operations can be
applied to variables and constants. Table 3 lists the operators supported in C.

Table 3: C Operators

Type of Operation Operation Symbol
Arithmetic Addition +
Subtraction -
Multiplication
Division /
Modulus (remainder after division) %
Increment by 1 X++
Decrement by 1 X--
Bit Bitwise NOT ~
Bitwise AND &
Bitwise OR |
Bitwise XOR A
Shift to left <<
Shift to right >>
Relational Greater than >
Greater than or similar to >=
Less than <
Less than or similar to <=
Equal to ==
Not equal to I=

In your programs, you usually write expressions that mix between different types of operators. For
example, you may write A = 4*B - 15. In this case, which operation is performed first? Hence, it is
necessary to know how to evaluate the expression. This requires defining an order for evaluating
operations in the expression. We call this precedence. Table 4 shows the precedence of different
operators in the HI-TECH compiler, ordered from highest to lowest. In case two operators have the
same precedence, the evaluation is from left to right.

Table 4: Precedence of Operators
Operator Precedence
Parenthesis () Highest
* /%

+ -

>> <<

<><=>=

> @

| Lowest

Simulating C Programs in MPLAB

Let’s now try to simulate a simple C program in MPLAB. The program is given below and it can be found
in ExampleProgram3.asm file. The program calculates the Fibonacci Series by recursively calling Fib()
function. The series is obtained by starting with two values; 0 and 1, and then the following values are
obtained by adding the previous two values.

// Example Program 3: Fibonacci series: 0,1, 1, 2, 3,5

#include <htc.h> // Library
unsigned int Fib (unsigned int Num1, unsigned int Num2); // Prototype
unsigned int F1, F2, F3, F4, F5, F6; // Global Variables
void main (void) // Main function
{

F1=0;

F2=1;

F3 = Fib (F1, F2);
F4 = Fib (F2, F3);
F5 = Fib (F3, F4);
F6 = Fib (F4, F5);

}
unsigned int Fib (unsigned int Num1, unsigned int Num2) //Function
{
return Num1 + Num?2;
}

To simulate this program in MPLAB:

1.

Start a new MPLAB session, create a new project and add the file ExampleProgram3.c to your
project.

Build the project.

Select Debugger % Select Tool Y MPLAB SIM. A set of shortcuts appear on the toolbar as
shown below.

B o T B

Go to View Menu — Watch. Add the variables F1 through F6 to inspect during simulation.
Press the “Step into” button one at a time and check the Watch window each time an
instruction executes.

Keep pressing “Step into” until you all the six terms of the series are generated.

Reset the simulation, do step 5 above but this time use “Step Over”, note the difference
Reset the simulation, do step 5 above, this time place a break point at the last instruction in
main, press run. Inspect the variables in watch window.

Note about simulating a code written in C in MPLAB

Stepping into codes written in C is not as direct as one would imagine! Different compilers
translate the C code into assembly differently. A single line of code might be translated into
multiple assembly lines. For example, a simple assignment statement “X = 5”, where X has been
defined as integer will be translated into four assembly instructions.

Movlw 05

Movwf 0x70 //GPR address 0x70 chosen by compiler

Movlw 00

Movwf 0x71

Since X is an integer, it needs 2 bytes in memory (16 bits as specified in the Table 2), it need be
saved as 0x0005, so two instructions are needed to load the first byte into location 0x70 and
another two to move the rest of the number into location 0x71.

If a simple one statement instruction was assembled like this, imagine how would complex
statements are translated like for loops and if statements. Moreover, some compilers are more

efficient than others, which give you optimized shorter assembly codes which might not be easy

to understand.

e DMoreover, function placement spans through multiple pages in program memory, hence, the
code might not be placed in consecutive order into memory by the compiler; further overhead
instructions to switch between pages are common.

e In addition, the use of built-in library functions will further complicate stepping through
assembly codes line by line as these functions are often provided as a black box for the
developer to use with no interest in their details.

For this, it might be difficult for the inexperienced to understand the assembly code generated by
compilers, and stepping into assembly code one instruction at a time might be a headache. It is often
advised to place breakpoints at points of interest and run the program till it halts at the required
breakpoints and analyze the outputs in the watch window.

Control and Repetition Statements in C

++ IF-ELSE Statements

if (expression1)

{

statement 1;

statement n;

}

else

{

statement 1;

statement n;

}

+ WHILE Loop Statement

while (expression)

statement 1;
statement 2;

statement n;

}

+ FOR Loop Statement

for (exprl; expr2; expr3)
{

statement 1;

statement 2;

statement n;
1

Example Code 5:

if (a==0) //If ais equal to 0

{
b++; // increase b and c by 1
C++;
}
else
{
b--; //decrease b and c by 1
c-5
}
Example Code 6:
while (a>=1) && (a <=10) //As long as 1<=a <= 10
{
b=b+3;
¢ = a%b;
}

Example Code 7:

for (i=0;i<100;i++) //loop 100 times

{

!

B=B+i+ A%i;

10

Writing C Programs for PIC

The preceding discussion introduced the C language in a broad concept. Now, we present an example on
writing C programs for the PIC microcontrollers. Actually, it is fairly simple where besides the user-
defined variables, the PIC registers are also used in the context of programs.

As you know, the operation of the microcontroller is completely controlled by registers. All
registers used in MPLAB HI-TECH have exact the same name as the name stated in the datasheet.
Registers values can be specified in different ways as shown in the following examples.

TRISB =0b00000000; //TRISB is output
PORTC = 255; //All pins of PORTC are made high
PORTD = OxFF; //All pins of PORTD are made high
PORTB =170; //Pin B7 on, B6 off, B5 on, B4 off, etc.
TRISB =0b11110010; //Pin RB7, RB6, RB5, RB4 and RB1 are input, other bits are
// outputs.
OPTION=0xD4 //PSA assigned to TMRO, Prescalar = 32, TMRO clock source is

// the internal instruction cycle clock, External interrupt is on
// the rising “refer to datasheet”

To set or reset one single bit in a register (one of the 8 bits), the pin name is used and, the names of
the bits are also as specified and used in the datasheet. For example:

RBO =1 //Pin BO on

RB7 =0 //Pin B7 off

Example 8 below shows a complete C program that continuously flashes a LED connected to RDO pin.

// Example Program 8: Periodically switch a LED connected to RDO on and off
#include <htc.h>

// if the whole function is placed before the main function, there is no need for a prototype
void Wait()

{

unsigned char i;

for(i=0; i<100; i++)

_delay(60000); //built in function .. more info next page
}

void main()
{
//Initialize PORTD -> RDO as Output
TRISD=0b11111110;
//Now loop forever blinking the LED.
while(1)
{
RDO=1; //LEDon
Wait();

RD0=0; //LED off
Wait();

To simulate the Example 8, you can either select PORTD from the ADD SFR drop down menu or
choose PORTD bits from the ADD SYMBOL drop list, click on the + sign to expand and see the
individual bits. Place your break points on both Wait() instructions and run the code.

11

Built-in Functions in C

The C standard libraries contain a standard collection of functions, such as string, math and
input/output routines. The declaration or definition for a function is found in the htc.h and other
libraries files which are to be included whenever necessary. Some of these functions are listed

below.

Delay Functions

_DELAY

__DELAY_MS and _ DELAY_US

Synopsis
#include <htc.h>
void _delay(unsigned long cycles);

Description

This is an inline function that is expanded by the
code generator. The sequence will consist of code
that delays for the number of cycles that is
specified as argument. The argument must be a
literal constant. An error will result if the delay
period requested is too large. For very large
delays, call this function multiple times.

//Example

#include <htc.h>
intA;

void main (void)

{
A=A|0x7f;
_delay(10); // delay for 10 cycles
A=A & 0x85;

}

Synopsis
_delay_ms(x) // request a delay in milliseconds
_delay_us(x) // requesta delay in microseconds

Description

As it is often more convenient request a delay in
time-based terms rather than in cycle counts, the
macros _ delay_ms(x) and _delay_us(x) are
provided. These macros simply wrap around
_delay(n) and convert the time based request
into instruction cycles based on the system
frequency.

These macros require the prior definition of
preprocessor symbol _XTAL_FREQ. This symbol
should be defined as the oscillator frequency (in
Hertz) used by the system.

//Example

#include <htc.h>
int A;
#define _XTAL_FREQ 4000000

void main (void)
{
A=A|0x7f;
__delay_ms(10); // delay for 10 ms
A=A & 0x85;

Arithmetic Functions

In addition to the htc.c library, other libraries such as Standard Library <stdlib.h> or C Math
Library <math.h> need be included in the project for making use of many useful built-in
functions such as ABS, POW, LOG, LOG10, RAND, MOD, DIV, CEIL, FLOOR, NOP, ROUND and SQRT.
Make sure you include the appropriate header files for each library before making use of its
functions or else build errors will be present.

12

ABS

POW

Synopsis
#include <stdlib.h>
int abs (int j)

Description
The abs() function returns the absolute value of
the passed argument j.

Synopsis
#include <math.h>
double pow (double f, double p)

Description
The pow() function raises its first argument, f, to
the power p.

double log10 (double f)

Description

The log() function returns the natural logarithm
of f. The function log10() returns the

logarithm to base 10 of f.

LOG and LOG10 RAND
Synopsis Synopsis
#include <math.h> #include <stdlib.h>
double log (double f) int rand (void)

Description

The rand() function is a pseudo-random number
generator. It returns an integer in the range 0 to
32767, which changes in a pseudo-random
fashion on each call.

Trigonometric functions

SIN

COosS

Synopsis
#include <math.h>
double sin (double f)

Description

This function returns the sine function of its
argument.it is very important to realize that C
uses radians, not degrees to perform these
calculations! If the angle is in degrees you must
first convert it to radians.

Synopsis
#include <math.h>
double cos (double f)

Description

This function yields the cosine of its argument,
which is an angle in radians. The cosine is
calculated by expansion of a polynomial series
approximation.

// Example:
#include <htc.h>
#include <math.h>
#include <stdio.h>
#define C 3.141592/180.0
double X, Y;
void main (void)
{
double i;
X=0;
Y=0;
for(i=0;i<=180.0;i+=10)
{X= sin(i*C);
Y= cos(i*C);
}
}

Note: The define directive

You can use the #define directive to give a meaningful name to a constant in your program. The

syntax is #define constantName Value.
Example: #define COUNT 1000

13

Labsheet
5

University of Jordan
School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Using HI-TECH C Compiler in MPLAB

Name:

Student ID:

Section (Day/Time):

COMPUTER NAME:

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING
DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334
Labsheet5: Using HI-TECH C Compiler in MPLAB

Name: Student ID:
Section:

(Pre-lab) Part 1: Code Analysis SKills
1) Create a new project in MPLAB IDE with the following steps:
a. Selectthe PIC16F877A as the device.
b. Select HI-TECH Universal ToolSuite as the Language Toolsuite.
c. Add the file labsheet5.c to your project
d. Build the project. There should be no errors.

2) Read and simulate the given C code and answer the questions which follow.
a. What s the size of the variables a and i in bits?

b. What will happen if you move (cut/paste) the “char a; “and place it in the initial function?
Why?

c. What does this operator mean “<< “which used in the second for loop “a=a<<1; “? What is
the instruction in PIC assembly language which performs the exact functionality?

d. What s the task of the __delay_ms(100) function ?

e. Rewrite the following C statement “if (a==00)"PIC assembly language. Assume a is a GPR.

Part 2: Code Writing SKkills (1)

Given the circuit in the Labsheet 5 Proteus Circuit Proteus Part 2 project, it is required to write a
program to display the numbers 0 to 8 continuously on the 7-segment display. Your code should
have at least two functions: initial and main functions such that:

o The initial function is used to initialize all ports, SFRs and GPR’s used in the program and this
function is only executed once at the program startup.

e The main function contains all the functions which perform the tasks of the system.

e The nature of the code requires the program to run continuously, i.e. the program code will
loop through specific functions which implement the system task.

e Notice that the 7-segment display is common-anode and is connected to PORTD such that
segment a is connect to RD0, segment b is connected to RD1 The following table lists the
7-segment codes for numbers 0-6. Complete it with the codes of numbers 7 and 8 and use it
in your program.

I 7 Segment Displa Number

0b11000000 0
0b11111001
0b10100100
0b10110000
0b10011001
0b10010010
0b10000010

Ob

0b

DI O U W

* You need to define a variable to store the current number to be displayed. This variable is
incremented by 1 to go to the next number. Once it is 9, it should be cleared.

o The value of the variable is converted to 7-segment code and displayed on PORTD.

¢ You should put some delay between displaying successive numbers in order to see them.

e There should be an infinite loop in the program to repeat the operation.

Show the simulation in Proteus to the lab engineer and copy your code below.

Part 3: Code Writing SKkills (2)

Modify the circuit in Labsheet_5 Proteus Circuit Proteus Part 2 project that you used in Part 2 by
adding a switch that is connected to RBO using a pull-up resistor. Afterwards, modify the code you
wrote in Part 2 such that it checks if the switch is closed or opened. If it is open, the system counts
and displays the value as required; however, when it is closed, the system flashes all the segments
continuously.

Show the simulation in Proteus to the lab engineer and copy your code below.

University of Jordan
School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Experiment 6: Timers

Objectives
The main objectives of this experiment are to familiarize you with:

e hardware timing modules provided by the PIC 16F877A.
o the concept of 7 segment multiplexing.

Pre-lab

You are required to review the following in order to be fully prepared for the experiment. Refer back to
both your text book and the Microchip PIC datasheets whenever you find it necessary.

o The operation of the TimerQ Module and the related OPTION_REG settings.

e The Operation of Timer2 Module and its associated PR2 and T2CON registers.

e The External interrupt on RBO.

o Context saving and retrieval while using interrupts.

Prepared by Dr. Ashraf Suyyagh and Eng. Enas Ja'ra - Revised by Prof. Iyad Jafar

1. Review of Timer(Q Operation

Hardware timers are special components that are usually available in most microcontrollers. They can
be used for counting and timing purposes, which are very important and frequent operations in
embedded systems. As you learned in the course, the PIC16F877A microcontroller has three timers:
Timer0, Timer1 and Timer2. In this quick introduction, we will review the operation of Timer0. You are
required to read Appendix 1 in this experiment to understand the operation of Timer2.

TimerO is an 8-bit counter/timer. The block diagram of this timer is shown in Figure 1. As you can see,
at the heart of this block is the 8-bit counter TMRO (address 0x01) which is used to store the count
value. The value in this register is incremented by one of two clock sources. The first source is the
signal that is observed on pin RA4/TOCKI. When this source is selected, the value can be incremented
on every rising or falling edge that is received on RA4/TOCKI. In this case, Timer0 is operating in the
counter mode and it is basically counting the edges. These edges can be the output of a switch or sensor.

The second source that can be used to trigger the increment of the count value in the TMRO register is
internal clock (Fosc/4). When this source is selected, Timer0 is operating in timer mode. In this mode,
the value in TMRO register is incremented every one cycle of Fosc/4. Whenever the value of TMRO
register reaches 255, i.e. the maximum value for an 8-bit register, the register is cleared and the Timer0
Interrupt Flag (TOIF) in the INTCON register is set. This event basically marks an overflow of TimerO. In
this experiment, we focus on using Timer0 in the timer mode.

Multiplexer selecting Multiplexer
Input edge select counting source selecting prescaler

7 /
'
FosC/4

{ Data Bus
SouT ' B8-bit counter
‘ 8

Sync with
Intemnal TMRO
RA4/TOCKI Programmable Eagy PSoUT
pin Prescaler
TOSE (2 Cycle Delay)
Set Interrupt
PS2, PS1, PSO PSA Flag bit TOIF
ToCcs on Overflow
Note 1: TOCS, TOSE, PSA, PS2:PS0 (OPTION_REG<5:0>).
2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).

Figure 1. Timer0 block diagram.

So, how can we use Timer0 to measure time? As mentioned earlier, the TMRO register is incremented
on every cycle of Fosc/4. Accordingly, we can calculate the elapsed time using

Time = N X

(1)

Fosc

where N represents the number of times Timer0 was incremented. Assuming that Timer0 starts from

zero and knowing that TMRO is 8-bit, then the maximum time that can be measured before the timer

4 1024
or .
osc Fosc

overflows is 28 x = What if we want longer time?

One solution is to reduce Fosc; however, this might not be possible. Another solution is to use the
Programmable Prescaler block that is shown in Figure 1. This block is basically a frequency divider

circuit that can be used to scale down Fosc/4, i.e. scaling up the period 4/Fosc, by a certain prescaler
value. In other words, this makes the clock observed by Timer0 slower. Accordingly, the time measured
by Timer0 can be calculated using

Time = N X — X prescale value (2)
Fosc

In order to use the Timer0 block, we need to configure it using the OPTION_REG which has all the bits
needed related to Timer0 such as choosing the source of the clock and specifying whether the prescaler
hardware is used with Timer0 or not. Figure 2 shows the OPTION_REG.

RAW-1 RAV-1 RAV-1 RAN-1 RAN-1 RANV-1 RANV-1

| RBPU [INTEDG IC5 TMOSE | pPsa | pPsz | Psi PS0
bit 7 bit 0

bit 7 RBPU: FORTB Full-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values
bit 6 INTEDG: Interrupt Edge Select bit

1 = Interrupt on nising edge of RBO/INT pin

0 = Interrupt on falling edge of RBO/INT pin
r)lt 5 TOCS: TMRO Clock Source Select bit

1 = Transition on RA4/TOCKI pin
0 = Internal instruction cycle clock (CLKOUT)

bit 4 TOSE: TMRO Source Edge Select bit

1 = Increment on high-to-low transition on RA4/TOCKI pin
0 = Increment on low-to-high transition on RA4/TOCKI pin

bit 3 PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT
0 = Prescaler is assianed to the Timer0 module

bit 2-0 PS2:PS0: Prescaler Rate Select bits
Bit Value TMRO Rate WDT Rate

ooo
001
010
011
100
101
110
111

e g]

1
2
4
8
- 16
s 32
64
128

[T S Y
=
[]s7)
RN gy

Figure 2: The OPTION_REG register.

Let's see how to configure and use TimerO to generate a time delay of 0.5 second on PIC16F84A
microcontroller with Fosc of 12.8 KHz. The first thing to do is some calculations to figure out the
number of increments needed (N) and the preclear value; if it is needed. From Equation (2), we have

4
Time = N X —— X prescale value
Fosc

05=N 3 X prescale value

X —_—
12.8 x 10

1600 = N X prescale value
This leaves us with one equation with two unknowns: N and the prescaler value. Luckily, we can solve
this equation by trying different values of the prescaler value that are listed in the table in Figure 2. The
possible options that give an 8-bit integer value for N are given in the table below.

Prescaler N Note
1 1600
2 800 Value can’t be used since N is 255 maximum
4 400
8 200
;; 15000 Value can be used
64 25
128 12.5 Value has to be truncated since N is integer. Okay to use if the required delay does
256 6.25 not need to be accurate

Let’s pick the prescaler to be 16. This implies that N is 100. Remember that N is the number of
increments to be performed in order for Timer0 to overflow, i.e. it reaches 255; thus, the TMRO register
has to be initialized to count from 256-N. Hence, TMRO in our case should be initialized to 156. To use
the prescaler with Timer0, we need to clear the PSA bit to use the Prescaler hardware with TimerO,
store (011), in the PS2, PS1 and PSO bits, and clear the TOCS bit in the OPTION_REG to select the
internal clock as Timer0 clock.

With these values in hand, we can now write a program to configure and use Timer0 to generate a 0.5s
delay as shown below. The program basically flashes an LED that is connected to RB1. The time
between flashing is done using the DELAY subroutine that uses Timer0. Every time the subroutine is
called, TMRO is initialized to D'156" and the OPTION_REG is configured as required. Afterwards, the
subroutine enters the waiting loop L1 in which it checks TOIF. Try to compile this code and simulate it

using the circuit available in Timer0Q Example Proteus Circuit.

1 #include plefB4A.inc

2 org 020000

3

4 main call initial

5

© repeat

7 BEANKSEL PORTEB

g bsf PORTE, 1 ; turn on LED

S call DELAY ; delay 0.5 sec

10 bef PORTE, 1 ; turn off LED

11 call DELAY

12 goto repeat

13

14 initial

15 BANKSEL TRISE

16 bef TRISBE, 1 ; RB1 is output

17 return

18

19 DELAY

20 BANESEL TMRO

21 movlw D'156" ; ; preload TO, it overflows after 156 counts
22 movwt TMR.O

23 BANKSEL OPTION_ REG

24 movlw B'0O0O0O0O1LY ;set up TO for internal clock, prescale by 1€
25 movwi OPTION_ REG

26 BANESEL TMRO

27 Ll btfss INTCON, TOIF ;test for Timer Overflow flag
28 goto Ll ;loop if not set (no timer overflow)
29 bef INTCON, TOIF ;clear Timer Overflow flag

30 return

31 end

This code can be written in C language as shown below. Try to analyze the code to get better
understanding on how to use C in writing programs.

1 #include <htc.h>

2 // Function prototypes

3 void initial();

4 volid delay();

5 // main

6 void main ()

7 initial();

8 // infinite loop to perform flashing

] while (1) {

10 PORTB = PORTB | 0B00000010 ; // cutput 1 on RB1
11 delay () ;

12 PORTB = PORTB & 0B11111101 ; // output 0 on RB1
13 delay () ;

14

15 1

16 // initialization

17 void initial(){

18 TRISB = 0BO00OOOOOO ; // RBl is output

19 return -

20 }

21 // Delay

22 void delay(){

23 TMREQO = 156 ; // initialize TMRO

24 OPTION = 0b00000011 ; // select Fosc/4, Prescalar = 16
25 while (TOIF==0) ; // loop to wait until TOIF is 1
26 TOIF = 0 ; // clear TOIF

27 return ;

28

2. The Stopwatch Example

In this section, we discuss an example of using Timer0 to design a simple stopwatch system. The system
uses a PIC16877A microcontroller running at 4 MHz and is connected through PORTC and PORTD to
two common-anode 7-segment displays to display the current count. The 7-segment display that is used
to show the most significant digit of the count is connected to PORTC while the other 7-segment is
connected to PORTD to show the least significant digit (In order to save the ports, you may have the two
displays share the same port and use 7-segment multiplexing technique that you learnt in class. This
technique is reviewed in Appendix 3). Additionally, a pushbutton START/STOP is connected to RBO to
control the operation of the stopwatch. Figure 3 shows the schematic diagram of the system. It is
available in the Stopwatch Proteus Circuit file.

Ut ror e
% OSCUCLKIN REOINT
05C2/CLKOUT RB1 [oor
‘m RE2
S| RADIAND RBIFGW |To=
S| RAUANI RE4 (o0
2| RA/ANIVREF-ICVREF RES
| RA/ANSVREF+ RBE/PGC
=5 RA4TOCKIC1OUT RBT/PGD
RAS/AN4/SS/C20UT
g — RCOM1OSOTICKI
—g=| REQIANSRD RC1/T10SNCCR2
o] REVANSAVR RC2/CCP1
——| RE2/ANTICS RCH/SCKISCL
i RC4/SDI'SDA
— MCLRA\pp/THY RCS/SDO
- RCAITXIGK
RCT/RX/DT
RDO/PSFO
RDA/PEP1

RD2IPSF2
RD3/PSF3
RO4/PEP4
RDS/PSPS
RD&/PSFE
RODTIPSFT

. FIC1BFETTA

Figure 3: Stopwatch Proteus circuit.

The system operates as follows:

1. When the system starts, it displays 00 on the two displays and waits the user to press the
START/STOP button.

2. When the user presses the button, the system starts counting 00, 01, 02, ... 59, 00, 01, 02 ... such
that each increment takes one second. This process is repeated indefinitely until the user
presses the button again. Timer0 is to be used for timing.

3. When the user presses the button again, the system pauses counting. However, when he presses
it again, counting resumes. In other words, the system toggles between two states; counting and
pause, whenever the START/STOP button is pressed.

The first thing to do is to perform some calculations to figure out the configuration of Timer0 to count
for 1 second when Fysc is 4 MHz. Using Equation (2), we have

1=NX X prescale value

4 x 106
If you try different values for the prescaler, you will conclude that we can'’t find a valid 8-bit value for N.
So, how to solve this without changing Fosc?

We can use what we call Software Postscaler technique. The idea is simple. Basically, we will allow
Timer0 to overflow certain number of times to generate the required one second time. Let’s call the

required number of times for Timer0O to overflow the software postscaler Ps. Hence, Equation (2)
becomes

. 4

Tlme:Nx%x Py X Ps (3)
where Py a is the hardware prescaler that we discussed in the previous section. Accordingly, and the
equation becomes

4
1=NX—X Py X P
4x106" s

or
1000000 = N X Py X P

Now, we need to find the values for N, Py and Ps under the constraint that N and Ps are 8-bit integers,
and Py is one of the allowed values for the hardware prescaler as shown in Figure 2. Trying different
values, we find that N = 250, Py = 32 and Ps = 125 gives the required time. In other words, we need to
initialize TMRO with (256-250=6), use a prescaler of 32 (PS2:PSO = 1002) and count 125 overflow
instances of Timer0. The numbers imply that Timer0 will overflow every 250x4x32/4x10¢ which is 8
ms. Counting 125 overflow instances gives the required time of 1 second.

Next, we need to design the flow of our program. In our design, we will assume the following:

1. We will use the External Interrupt on RBO to detect when the user presses the pushbutton. So,
we will enable this interrupt source in the INTCON register.

2. We will define the variable START_STOP to store whether the system is counting or stopped.
This variable stores 0x00 when the system is stopped and OxFF when the system is counting.
This variable is complemented inside the ISR whenever the START/STOP pushbutton is pressed
to change to state of the system.

3. We will use Timer0 Overflow Interrupt to know when it overflows. So, we need to enable this
interrupt in the INTCON register.

4. We will define the variable SEC_CALC to count whether Timer0 has overflown 125 times. This
variable is incremented by 1 in the interrupt service routine ISR whenever Timer0 overflows
until it reaches 125. At this moment it should be cleared.

5. We will use two variables LOW_DIGIT and HIGH_DIGIT to store the two digits to be displayed on
the two 7-segment displays. The value of LOW_DIGIT is incremented when SEC_CALC is 125 and
is cleared when it reaches 9. The HIGH_DIGIT is incremented when LOW_DIGIT is 9 and it is
cleared when its value is 6. This will perform the counting operation from 0 to 59 as required.

6. The LOW_DIGIT and HIGH_DIGIT values are converted to 7-segment codes as we did in
Experiment 3.

7. The main program will be responsible for initialization and displaying the count value.
Afterwards, it enters an endless loop to update the displays and wait for interrupts. All the
operations on the variables and displaying the value on the displays are implemented inside the
ISR by calling other subroutines.

The flowchart in Figure 4 shows the operation of the main program and the ISR. Study this flowchart
carefully before looking at code that is presented next. The branching to and from the ISR is indicated
by the dashed arrows.

1
[}
[}
[}

Context Saving

Initialization
(PORTS, Enable Timer0 and External
Interrupts, Configure TimerO, Clear Variables)

v

Update Display

Is TimerO
Interrupt?

Is External
Interrupt?

Y Yes

v v
Reinitialize Timer0

Complement

e e, _———c e ——————-

Interrupt | SEC_CALC v
Detected? Increment
No SEC_CALC

Is START_STOP Is SEC_CALC

Clear SEC_CALC 125?

'y
[}
|
|
[}
|
|
L}
|
|
[}
|
L}
[}
|
L}
[}
|
[}
|
|
L}
|
|
\ N
|
|
[}
|
[}
: Yes
. v
|
|
[}
|
|
[}
|
|
L}
|
L}
L}
|
)
[}
|
[}
|
|
[}
|
|
[}
|
|
[}
|
[}
[}
|

Clear LOW_DIGIT Increment

7 LOW_DIGIT
N
Increment HIGH_DIGIT °

No
Is HIGH_DIGIT 6? No
A 4

Y:S y y

A 4

Clear HIGH_DIGIT Context Retrieval

!

e T Exit ISR

A
h

Figure 4: Flowchart of the system.

The assembly code that implements this flowchart is given below. Note the following while studying the
code:

1. We check the source of interrupt at the beginning of the subroutine since we are using two
interrupt sources; Timer(Q and External Interrupt. Based on the source of interrupt we change
the flow of execution to the code the service that interrupt source.

2. We pushed the Working register to location tempW at the beginning of the code that services

Timer0 to preserve it, since this code modifies the Working register. The value of W is restored
at the end this code.

(== I SR T TS PV

(=
(=]

12
13
14
15
1é
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Ba
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
il
52
53
54
55
56
57
S8
59
&0
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

sk kR kA Kk

; Connections:

o

Ak A kA Ak A A A A A A A Ak A A A A Ak kA A A A A A A kA h A hhhhhhhh hhk i hdddddddddddddddddddddddd

i Input:

i Pushbutton : REO

; Cutput:

; 7-Segment Least Signigicant Digit A-G: PORTD 0-6
; 7-Segment Most Signigicant Digit A-G: PORTC 0-6

T
INCLUDE "PleEF877A.INC"
-
; CBLOCK Assignments
-

CBLOCK 0XZ0

Delay reg
STATUSTEMP
LOW_DIGIT ;holds the digit to be displayed on first 7_segment
HIGH DIGIT sholds the digit to be displayed on second 7_segment
SEC_CALC ;jused in calculating the =lapse of one second
START STOP ;user defined flag which if filled with 1's the stop watch
;ocounts, else halts
tempW ;location save W during subroutine call (Context saving)
ENDC
T T ——————————.—..
ORG 0xX0000
GOTO MATN
ORG 0xX0004
GOTO ISR

P R R

MATIN

CALL INITIAL
MATNLOOP

CALL DisplayClock

GOTO MAINLOOP

£ kR R R R R R R R R R R R R R R R R A kR R R Rk R R R R Rk
INITIAL
BANESEL TRISA

CLRF TRISD ;PORTD is output

CLRF TRISC ; PORTC is output

MOVLW 01 ;BB0 as input (External Interrupt enabled), RB1-RB7 as

MOVWF TRISE joutputs

BCF INTCOM, INTF ;TMRO and External Interrupts Enabled, their flags

BCF INTCON, TOIF ;cleared

BSF INTCON, INTE

BSF INTCON, TOIE;>>3>>>>>3H>

BSF INTCON, GIE

MOVLW 0xXD4 ;PSA assigned to TMRO, Prescalar = 32, TMRO clock source
;15 the internal

MOVWEF OPTION_ REG ;instruction cycle clock, External interrupt is on the ri
;edge

BANESEL TMRO ;TMRO to update 256 - & = 250

MOVLW 0x0e
MOVWFEF TMRO

CLRF LOW_DIGIT ;Initially, the number to be displayed is 00
CLRF HIGH DIGIT

CLRF SEC_CALC ;0 ms has passed

CLRF START STOP ;stopwatch is initially stopped

RETURN

P R R

ISE

BTFSC INTCON, INTF ;External Interrupt has higher priority
GOTO START_ STOP_CODE
GOTO TME(_ CODE

P R e e

START_ STOP_CODE

BCF INTCON, INTF ;jclear external interrupt flag
COMF START STOP, F ;thus halting or starting the stopwatch.
RETFIE

P R R

TMED_ CODE

MOVWF tempW ;jsave W temporarily
BCF INTCON, TOIF ;Clear TMRO Flag
BANESEL TMED

MOVLW 0x06 ;Reinitialize TMRO

MOVWFEF TMRO

T

BANKSEL OPTION_ REG
MOVLW 0XD4
MOVWFE OPTION_REG

BANESEL TMRO

INCF SEC_CALC, F ; check if TIMERO has overflown 125 times
MOVLW .125 ;hssuming a clock of 4MHz, we need

SUBWF SEC_CALC, W ;250 * 32 * 125 = 1x10”6 ps = 1 Sec
BTFSS STATUS, 2

GOTO ENDTMRO iNot 1 Sec yet

BTFSC START STOE, 0

CALL UPDATE _DIGITS ;if one second passed, update digits
ENDTMRO

MOVF tempW, W ; restore W

RETFIE

;**

UPDATE_DIGITS

CLRF SEC_CALC iCleared so as to count the next 1 sec correctly

MOVF LOW _DIGIT, W ;If previous low digit is not 9, increment low digit by one
SUBLW 0xX09 ;else, increment high digit by one and clear low digit
BTFSC STATUS, 2

GOTO UPDATE _HIGH DIGIT

GOTO UPDATE LOW_DIGIT

UPDATE_LOW_DIGIT
INCF LOwW_DIGIT, F
GOTO END UPDATE

UPDATE_HIGH DIGIT

CLRF LOW_DIGIT

INCF HIGH DIGIT, F

MOVEF HIGH DIGIT, W

SUBLW [i if high digit reaches € (that is number = 60, 1 Minute),

BTFSC STATUS, & jreset

CLRF HIGH DIGIT
END UPDATE

RETUEN
;****‘l‘***
DisplayClock

BANESEL FPORTC

MOVF LOW_DIGIT, W

CALL LOO]{_TBBI.E

MOVWEF PORTD ; output LSD

MOVF HIGH DIGIT, W

CALL LOO]{_TBBI.E

MOVWEF PORTC i output MSD

RETURN

;**

Look TABLE
ADDWF PCL, F

RETLW B'11000000" ;o
RETLW B'11111001" Pt
RETLW B'10100100" ;rar
RETLW B'10110000" ;'3
RETLW B'i10011001" ;4
RETLW B'10010010" ;'S5
RETLW B'10000010" i'e’
RETLW B'11111000" ER
RETLW B'10000000" P'e!
RETLW B'10010000" P'er
END

3. How to Simulate the Stopwatch Example in MPLAB?

You have learnt in Experiment 3 that we can use the Stimulus tool to simulate external inputs to the
microcontroller. The Stimulus option is available in the Debugger menu as shown in Figure 5. When you
select New Workbook, a new window will appear where you can add the pins to stimulate and specify
type action to happen on this pion when stimulated.

Debugger | Programmer Tools Configure Window Help

Select Tool
Clear Memory

Run

Animate

Step Into

Step Over
Step Out

Reset

Breakpoints...

StopWatch

Complex Breakpoints
Stimulus

Profile

Clear Code Coverage
Refresh PM

Settings...

F9

F8

F2

3

>

A Stimulus - [Untitled]

2~ TR .
u e - @) @ 0 Asynch | Pin / Register Actions I Advanced Pin / Heglstel] Clock Stlmdus[Register In\echonl Register Trace
Fire | Pin/SFR | Action ‘Width | Units | Comments / Message
> |RBO Pulse High 50 cyc
;Assuming a cloc of
=250 * 32 * 125 = 1x1
;Not 1 Sec yet
if one second passed
e e e e e e e e e e e e e e e e e e e b e
New Workbook b
8
Open Workbook

Save Workbook
Save Workbook As
Close Workbook

Figure 5. Stimulus window.

In our system, we are observing one input; which is RBO which is connected to the START/STOP
pushbutton. Specifically, we want to generate a rising edge on this pin wherever the pushbutton is
pressed. So, in the workbook window, we add RBO pin and specify the action to be Pulse High.

Now to perform the simulation:
1. Add Low_Digit, High_Digit and Start_Stop to the watch window.

2. Place a break point at line 79 (Instruction return). This will allow us to see the change to
Start_Stop, if OXFF the stopwatch counts, else it stops.

3. Place another breakpoint at line 105 (Instruction return), this will allow us to observe how
Low_Digit and High_Digit change

4. Run your code, you will observe nothing except that the values in the watch window are all

Zeros.

[© 2N O)1

. Now Press “Fire”, the arrow next to the RBO in the Stimulus pin, what do you observe?
. Now, press “run” again, observe how the values of Low_Digit and High_Digit change whenever

you reach the breakpoint.
7. Press “fire” again, how do the values in Low_digit and High_Digit change now?

Remember to set the clock to 4 MHz in the Debugger-> Settings menu. Also, make sure that the
Watchdog Timer is off. To do so, select Configure-> Configuration Bits and put the Watchdog Timer in
the OFF mode. Read more about the Watchdog Timer in Appendix 2.

10

Appendix 1: Timer2 Module

Timer2 is another timer module that is available in the PIC16F877A microcontroller. The block diagram
of this timer is shown in Figure 6. Similar to Timer0, it is an 8-bit timer. However, it can be operated in
timer mode only as it can be triggered by the internal clock (Fosc/4). Also, Timer2 has prescaler and
postscaler hardware that can be used to extend the time generated by Timer?2.

Sets Fla
bit TMR2IF]| Qupeatt

RESET

— o Prescaler
TMR2 Reg | 11, 14,1 16

{Comb}rator ,I/ 2

I T2CKPST:
™ PR2 Reg T2CKPS0

Postscaler
11 to 1:16| EQ

V&

\TZOUTPS3.‘

T20UTPSO0
Figure 6: Timer2 block diagram.

Timer2 has two 8-bit data registers: TMR2 and PR2. TMR?2 is used to store the initial count value while
PR2 is used to store the final count value. Whenever the value in TMR2 register equals that in PR2,
TMR2 is cleared and the Timer2 Interrupt Flag (TMRZ2IF) is set to indicate that. Note that you need to
set the T20N bit in the T2CON in order to force Timer2 to start counting.

The prescaler hardware of Timer2 is similar to that of TimerO0. It basically scales-down the clock of
Timer2 by some factor. The value of the prescaler can be specified using the T2CKPS1 and T2CKPS2 bits
in the T2CON register that is shown in Figure 7.

On the other hand, the postscaler in Timer2 delays setting the TMR2IF for specific number of times
that equals the postscaler value. The values of the postscaler can be set using the TOUTPS3:TOUTPSO
bits in the T2CON register.

UO RWD RWQ RWO RWO RWO RWO RWD
[— [TouTPs3 | TOUTPS2 | TOUTPS1 | TOUTPSO | TMR20ON | T2CKPS1 | T2CKPSO |
bit bit 0

7

bit 7 Unimplemented: Read as '0°
bit 6:3 TOUTPS3:TOUTPSO: Timer2 Output Postscale Select bits

0000 = 1:1 Postscale
0001 = 1:2 Postscale

1111 = 1:16 Postscale
bit 2 TMR20N: Timer2 On bit
1=Timer2 is on
0=Timer2 is off
bit 1:0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits

00 = Prescaleris 1
01 = Prescaleris 4
1x = Prescaler is 16

Figure 7: T2CON register.
Accordingly, the time that takes Timer2 to reach the value in PR2 register and set the TMR2IF is given

by

Time = (PR2 + 1) X é X prescale value X postscale value (4)

11

Appendix 2: Watchdog Timer

The Watchdog Timer (WDT) is a part of hardware that can be used to automatically detect software
anomalies and reset the processor if any occur. A watchdog timer can get a system out of a lot of
dangerous situations.

Basically, it is timer similar to other counters in the PIC, but it has its own clock. When this timer is
enabled and it overflows, it resets the microcontroller. The WDT can be enabled/disabled
setting/clearing the WDTE bit in the Configuration Word. If you decide to enable the WDT, then you
need to clear it regularly in your program to avoid resetting the PIC unintentionally when the program
is running normally. To do so, you should use the CLRWDT instruction.

So, how long does it take the WDT to overflow?

The PIC data sheet specifies that the WDT has a period from start to finish of 18ms. This is dependent
several factors, such as the supply voltage, temperature of the PIC etc. The reason for the
approximation is because the WDT clock is supplied by an internal RC network. The time for an RC
network to charge depends on the supply voltage. It also depends on the component values, which will
change slightly depending on their temperature. For the sake of simplicity, we will assume that the
WDT resets every 18ms.

However, make this longer using the Prescaler hardware that we discussed in Timer0Q. This prescaler
can be assigned to WDT instead of Timer0 to scale down the WDT clock; hence extending the WDT
overflow. The assignment can be done using the PSA bit in the OPTION_REG which is given in Figure 2.
Notice that different values of the prescaler are used when it is assigned to the WDT. The table below
lists the possible time-out periods for the WDT when different values are used.

PS2,PS1,PS0O Rate WDT Time
0,0,0 1:1 18ms
0,0,1 1:2 36ms
0,1,0 1:4 72ms
0,1,1 1:8 144ms
1,0,0 1:16 288ms
1,0,1 1:32 576ms
1,1,0 1:64 1.1s
1,1,1 1:128 2.3s

Example. Suppose that want the WDT to reset the PIC after about half second. From the table above,
the closest value is 0.567s; hence we need to select the prescaler to be 101, i.e. the PS bits are 101. So,
we write

BANKSEL OPTION_REG ; make sure we are in bank 0

CLRWDT ; reset the WDT and prescaler

MOVLW B’00001107’ ;Select the new prescaler value and assign to WDT
MOVWEF OPTION_REG

The CLRWDT instruction is used to clear the WDT before it resets the PIC. So, all we need to do is
calculate where in our program the WDT will time out, and then enter the CLRWDT command just
before this point to ensure the PIC doesn’t reset. If your program is long, bear in mind that you may
need more than one CLRWDT. For example, if we use the default time of 18mS, then we need to make
sure that the program will see CLRWDT every 18ms.

12

The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and
prevent it from timing out and generating a device RESET condition.

Appendix 3: 7-Segment Multiplexing

The way we designed the Stopwatch system used separate ports to interface the two 7-
segment displays. However, this might not be efficient in case we have more devices to
interface to the PIC. A solution of this is connect both displays to the same port and display the
value on each display for a short period of time repeatedly. This will give the user the illusion
that both displays are on. This technique is called multiplexing. Figure 8 shows an example of
multiplexing two displays.

Digit 1 Enable Digit 2 Enable

DIGIT 2

DIGIT 1

- oanow

Figure 8: 7-Segment multiplexing.

In this example the LED segments of all the digits are tied together. So, if you send date to any one of the
segment, it will be displayed on both segments! To avoid that, the common pins (Enable) of each digit
are turned ON separately by the microcontroller. When each digit is displayed only for several
milliseconds, the eye cannot tell that the digits are not ON all the time. This way we can multiplex any
number of 7-segment displays together. For example, to display the number 24, we have to send 2 to
the first digit and enable its common pin. After a few milliseconds, number 4 is sent to the second digit
and the common point of the second digit is enabled. When this process is repeated continuously, it
appears to the user that both displays are ON continuously.

The file Stopwatch Multiplexing Code.ASM contains the code required to implement the

stopwatch operation using 7-segment multiplexing. Try to compile this code and use it in the
Stopwatch Multiplexing Proteus Circuit to investigate the operation of multiplexing.

13

Labsheet
6

University of Jordan

School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

e daa s Y|

M o
‘a,.“wul: 1

NOERANTNANANEN
—— -

Name:
Student ID:

Section (Day/Time):

COMPUTER NAME:

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING
DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet6: Timers

Name: Student ID:

Section:

(Pre-lab) Partl: The operation of the Timer0 Module and the related OPTION_REG
settings

We want to create a delay of 1.6 ms in some program using the Timer0 module in
PIC16F877A microcontroller and an oscillator with a value of 8 MHz. Answer the following
questions.

Q1) What is the internal frequency?

Q2) Find the instruction cycle time?

Q3) Using equation 3 in the tutorial, find suitable values for N, Py and Ps to generate
this delay.

Q4) What are the values of the following registers: TMR0O and OPTION_Reg in order to
generate the time of 1.6 ms?

TMRO = 0x
OPTION_REG = 0x

Page 2 of 4

Part2: Code Modification

We need to modify the experiment code in the Stopwatch Code.ASM file such that:
1. The system should count from 00 to 19 instead from 00 to 59.
2. The time step between successive values is 0.5s instead of 1s.
3. Oscillator value is still 4AMHz.

Answer the following questions.

Q1) What is the internal frequency?

Q2) Find the instruction cycle time?

Q3) Using equation 3 in the tutorial, find suitable values for N, Py and Ps to generate
this delay. Note that Ps is the value of SEC_CALC in the code.

; copy and paste your assembly code here and simulate the program in the Stopwatch
Proteus Circuit. Show the simulation to the lab engineer.

Page 3 of 4

Part 3: Using Timer2 in the Stopwatch

We need to modify the system such that instead of using Timer0, we want to use Timer2 for
timing the stopwatch. The system should operate as follows:

1. The system should count from 00 to 25 instead from 00 to 59.

2. The time step between successive values is 0.5s instead of 1s.

3. Oscillator value is 4MHz.

Remember that Timer2 has the period register (PR2) and a postscaler hardware in
addition to the prescaler. Read Appendix 1 in the tutorial.

What are the values of the following registers in order to generate the time of 0.5
second?

PR2: Ox

SEC_CALC:

Timer2 Prescaler counters: D'

Timer2 Postscaler counters: D'

T2CON: B' '

Now, write a C program to implement the stopwatch system using Timer2. You can
start with the incomplete code that is available in the Labsheet 6 Part 3.c file.

Notice that we defined the array lookTable that contains the 7-segment codes for
number 0 through 9. You can use this table to convert the LOW_DIGIT and HIGH_DIGIT
values to their segment codes by writing lookTable[LOW_DIGIT] and
lookTable[HIGH_DIGIT].

; copy and paste your assembly code here and simulate the program in the Stopwatch
Proteus Circuit. Show the simulation to the lab engineer.

Page 4 of 4

University of Jordan
School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Experiment 7: ANALOG-TO-DIGITAL

CONVERTER (A/D) MODULE

Objectives

+ To familiarize you with the built-in A/D hardware module.

Pre-lab requirements

% Review the PIC16F877A datasheet section on the AD module.
+ Appendix A quickly reviews the AD module.

Written by Eng. Enas Jaara - Revised by Prof. Iyad Jafar

1. Introduction

In the real world, most of the signals sensed and processed by humans are analog signals. In order to
store, process and use these signals in digital systems, these signals have to be converted into digital
format. The process that is used for this purpose is called analog-to-digital conversion (ADC) and it
uses a special hardware call the analog-to-digital converter.

The ADC process is basically two steps:

1. Sampling: in this step, the ADC takes a sample of the input signal. This is done by closing a
switch (Sampling Switch) to connect the signal to a capacitor (Hold Capacitor) to store the
sample voltage. Since the capacitor is not ideal, we need to wait for the capacitor to
charge/discharge before opening the Sampling Switch to disconnect the capacitor. This time is
called the acquisition time.

2. Conversion: in this step, the voltage on the Hold Capacitor, which represents the sample
value, is converted using special hardware into n-bit binary value. The time required to
convert the sample is called the conversion time.

Assuming that the sample value is to be represented using n bits, then the ADC basically divides a
finite range voltage (Input Range [Vier,Vrer:]) into 2» subranges such that each of these subranges has a
length of (Vrers- Vier-)/2n, which we call Resolution. The binary code of the sample is determined by
knowing the subrange that the sample belong to.

For example, consider a 3-bit ADC with [V, Viet]=[0,4]. Table 1 shows the subranges and the
corresponding binary value to be assigned to any sample in [Vrer., Vrer:]. Any sample outside the range
[Viet, Vrers] is clipped. Notice that the binary value is not necessarily the actual voltage of the sample. It
basically represents the number of the subrange to which the sample belong. For example, if the
binary value is 101, this implies the sample is in [2.5,3.0] volt. Usually, we assume the actual value to
be the minimum of the subrange, i.e. 2.5V in this example.

Table 1: Example of 3-bit ADC

Sub-Range Binary Value

0 < input voltage < 0.5 000
0.5 < input voltage < 1.0 001
1.0 < input voltage < 1.5 010
1.5 < input voltage < 2.0 011
2.0 < input voltage < 2.5 100
2.5 <input voltage < 3.0 101
3.0 <input voltage < 3.5 110
3.5 < input voltage < 4.0 111

Alternatively, it is common to assume that the ADC performs a linear mapping from [Vret, Vrer:] to [0,20-

1]. Hence, we can calculate the corresponding voltage of the sample using
Vref+_Vref—

Sample Voltage = g X Binary Value + Vyer_ (1)
and we can determine the binary value of the sample using
Binary Value Voltage = # X (Sample Voltage — Vyer_) (2)
ref+~Vref—

2. The PIC16F877A ADC

In general, embedded systems are used to sense different physical analog quantities such as
temperature, humidity and light. For this purpose, an ADC can be interfaced to the microcontroller to
perform conversion. Since this is very common in embedded systems, many microcontrollers have at
least one ADC module integrated within it. For example, the PIC16F877A has an 8-channel 10-bit ADC
module. This implies that this ADC can be connected to eight different signals and each sample is
represented using 10 bits.

Using the ADC module in PIC16F877A microcontroller is similar to using other modules inside the
microcontroller, i.e. using special function registers. Specifically, the ADC in PIC16F877A has two
control registers; ADCONO and ADCON1, and two result data registers; ADRESH and ADRESL. The
control registers are used to configure the A/D while the result registers are used to store the 10-bit
binary value that comes out of the ADC. Table 2 shows these registers.

The ADCONO register contains a set of bits:
1. ADON - Turn on the ADC. By default, it is turned off on power-up to save power.
2. CHS2:CHSO - Select the channel to read the sample from.
3. GO/DONE - Start the conversion process once the sample is acquired. This bit is cleared by
the ADC once the conversion is complete.
4. ADCS2:ADCSO - Specifying the clock rate of the ADC. Note that ADC2 is in ADCON1 register.

On the other hand, the ADCON1 register has the following bits:
1. PCFG3:PCFGO - Specify whether PORTA and PORTE pins are analog or digital pins.
2. ADFM-> Format the 10-bit result in the result registers.

Table 2: Control and Data Register of the ADC

Name Bit7 | Bit6 | Bit5 | Bit4 | Bit3 Bit 2 Bit1l | BitO
ADRESH A/D Result Register - High Byte
ADRESL A/D Result Register - Low Byte
ADCONO [ADCS1 | ADCSO | CHS2 | CHS1| CHSO | GO/DONE - ADON
ADCON1 | ADFM | ADCS2 - - PCFG3 PCFG2 PCFG1 | PCFGO

In order to use the ADC, we need to write instructions to configure its features such the clock rate, the
channel being used and the formatting of the result. Please refer to Appendix 1 to learn the details on
how to specify the values of different bits in these two registers.

In general, using the ADC follows the steps that are shown in Figure 1. For the ADC in PIC16F877A,
note that:
e We need to wait some time before we start a conversion process after turning on the ADC on.
e (losing the sampling switch to start acquiring the sample is done by selecting the input
channel.
e The end of conversion is known by checking the GO/DONE bit or the ADC interrupt flag
(ADIF).

| Configure and enable ADC |

/\" ‘

| Select multiplexer input |

| ‘Sample’ input signal |
+ J
| Delay for signal acquisition |

Y

| ‘Hold' input signal |

¥

| Slart conversion |

1

Delay for conversion
to complete

1

These stages merge
if multiplexer forms
part of S&H

Figure 1: Steps for using ADC.

3. ADC Example

Let’s demonstrate the use of the PIC16F877A ADC with Fosc being 2 MHz in an example in which we
want to convert the voltage that is coming out of a potentiometer continuously to 10-bit digital value
and display the upper 8-bit of the result on three 7-segment display as a BCD value.

The potentiometer is connected to RAQ, i.e. we will use channel0 for ADC. The three segment displays
are common-anode and are connected to PORTD. We will use 7-segment multiplexing to display the
value on the displays (Read Appendix 3 in Experiment 6). To control which display is enabled, we
connect the common input of the hundreds, tens and units displays to RB1, RB2 and RB3 pins,
respectively.

We will configure the ADC features as follows:

Turn on the ADC by setting the set ADON bit.

Choose the analogue channel 0 “AN0” as the analogue input of the AD module by setting CHS2:
CHSO to 000.

RAO should be configured as analog input. Set the voltage references Vi and Vi to be
internal. This can be done by setting PCFG3:PCFGO bits to 1110 (other options are possible,
check Appendix 1).

The result is to be left justified such that the upper 8-bits will reside in ADRESH and the lower 2
bits will reside in ADRESL. In this program, we will choose to ignore ADRESL and only deal with
the upper 8 bits of digitized value to simplify program development. To do so, clear the ADFM
bit.

The ADC clock is set to Fosc/8 by setting ADCS2:ADCSO bits to 001.

Hence, ADCON1 should be 0xOE and ADCONO should be 0x41.

In general, the program will operate such that it continuously uses the ADC to convert the value on
RAO to digital, convert the value in ADRESH from binary to three BCD digits that represent the
hundreds, tens and units digits of the corresponding digital value, and then display them on the 7-

segment displays. The flowchart of the system is given in Figure 2. Study the flowchart along with the
following code to understand the operation of the system. Try to simulate the program using the ADC

Example Proteus Circuit.

Initialization
(RAO analog input, RA3:RAS digital output,
PORTD output, Turn-on ADC)

v

Configure ADC
A » (Select ADC clock, Select Channel, Choose
Formatting)

A 4

Delay to Acquire Sample

A 4
Start A/D Conversion

(Set GO bit)
v
No
ADIF=1?
Yes
A 4

Clear ADIF and Read Upper
8-bit of Result

v

Convert Result to BCD

v

Display on 7-segment

Figure 2: Flowchart of ADC Example.

hhkhkhhhkhhhhkhhhhkbhhhbhhhbhhhhhhhkdhhhhhhhbhhhdbhhhbhhhhbhhhhhhkkhhhhkhdhdhhkhhdhkdhhhhkihiik
; ADC Example

;i This code reads the voltage from a potentiometer connected to analog

; channel 0 (RA0), converts the lower 8 bits of the result (ADREL) to

; 3-digit BCD code, and displays them on three 7-segment displays using

; T-segment multiplexing

i Inputs:

; BAROD - analog

; Outputs:

; RB1l, RBZ, RB3 - digital outputs connectd to the commons of 7-seg displays

; PROTD - connected to segments a-g of the displays
R R R R e R R R R S S S

__CONFIG _DEBUG OFF&_ CP_OFF& WRT_HALF& CPD OFFs_LVP_OFFs_ BODEN OFFs_PWRTE_OFF&_ WDT OFF&_XT OSC

#INCLUDE<P16FB877a.INC>

; Ak kkkkhhkkdhhkhkdhhhkdhhhdhhhdh ok hdhhhd Ak hkdhhhdhhhdhhhh Ak dhhhd ko k hd h ok h d h ok h h ko ko k

TEMP EQU 20H jtemporary register

hundreds EQU 21H ;the hundred bit of convert result
tens EQU 22H ;the ten bit of convert result
units EQU 23H ;the ones bit of convert result

,'***********************MAIN proqra_rn***i***i***i***i***i***

ORG 00H
MAIN
BANESEL TRISA ;select bank 1
MOVLH 01H ;PORTA bit Number(is INPUT
CLRF TRISD ;211 of the PORTD bits are outputs
CLRF TRISB
BANKSEL ADCON1
MOVLW 0x0E
MOVWF ADCON1
BANESEL ADCONO
BSF ADCONO, & ;Set ADCSO
BSF ADCONO, O ;Set ADON to start ADC
CALL DELAY ;Wait for ADC to start
LOOP ;Code to initilize ADC
CLRF tens
CLRF hundreds
CLRF units
MOVLW 0x41
MOVWF ADCONO ;Select channel 0
CALL DELAY ;Wait to acguire sample
BSF ADCONO, GO ;Start conversion
BRANKSEL PIR1 ;Poll ADIF flag to wait for conversion
WAILT BTFSS PIR1, ADIF
GOTO WAIT
BCF PIRl, ADIF ;Clear flag to prepare for next conversion
BANESEL ADRESH
MOVF ADEESH, W
MOVWF TEMP
CALL CHANGE To_BCD ;call result convert subroutine
CALL DELAY
CALL DISPLAY ;call display subroutine
CALL DELAY
GOTO LOOP ;Do it again

sk kA Ak k Ak ok kAR kAR kAR AR CONTert SUbTOUL IR F kA dk ke ko ko Ak ke ok ko kA ok ok

; Subroutine to convert the 8-value in Temo to 3 BCD digits
;*i’i***i’*i****i‘***i'i'***i’*i****i‘***i'i'*****i****i***i******i****i***i*****

CHANGE To BCD

BANESEL PORTA
gen_hunds
MOVLW 100 ;sub 100, result keep in W
SUBWF TEMP, 0
BTFSS STATUS, C ;judge if the result biger than 100
GOTO gen_tens jno,get the ten bit result
MOVWF TEMP ;yes,result keep in TEMP
INCF hundreds, 1 shundred bit add 1
GOTOQ gen_hunds jocontinue to get hundred bit result
gen_tens
MOVLHW .10 ;sub 10,result keep in W
SUBWF TEMFP, O
BTFSS STATUS, C ;jjudge if the result biger than 10
GOTO gen ones ;no,get the Entries bit result
MOVWF TEMP ;yes,result keep in TEMP
INCF tens, 1 iten bit add 1
GOTO gen_tens jturn to continue get ten bit
gen ones
MOVF TEMP, W
MOVWF units ;the value of Entries bit
RETUEN

;t‘l"l"l‘**‘l‘t‘l‘*****t******t****[}isplay Subroutine*‘l‘***t******t******t******

; Subroutine to show the three values on the 7-seg displays
;**

DISPLAY

MOVF hundreds, W ;display Hundreds bit
CALL TABLE

MOVWEF PORTD

BSF PORTE, 1

CALL DELAY

BCF PORTE, 1

MOVF tens, W ;jdisplay Tens bit
CALL TABLE

MOVWF FORTD

BSF PORTB, 2

CALL DELAY

BCF PORTB, 2

MOVF units, W ;jdisplay Units bit
CALL TABLE

MOVWF FORTD

BSF PORTBE, 3

CALL DELAY

BCF PORTBE, 3

RETURN

phREkkkhkhkhkhkhkhkhkhkhkhhk Lookup Table *rhrhhkhkdbdhhbhhhhhhhhs

TABLE
ADDWF PCL, 1
RETLW B'11000000" HRR
RETLW B'llilioolr AN
RETLW B'10100100°" a2
RETLW B'10110000" ;'3
RETLW B'10011001" ;4
RETLW B'10010010" ;'57
RETLW B'10000010" ;'e!
RETLW B'1l1111000" AN
RETLW B'10000000" HAR:
RETLW B'10010000" FRE-L

;ii***iiiiiiii****iiiiiiii**Delay subroutine***kkddkddbbd bbb bbb dhdhd

DELAY

MOVLW 0x0F
MOVWE TEMP

1 DECFSZ TEMF, 1
GOTO 1
RETURN

;***

END ;jprogram end

Appendix 1: PIC16F877A ADC Registers

ADCONO Register Ox1F
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 R/W-0
aDcs1 | apcso | cHs2 | cHS1 | CHS0O |GOMDONE| — ADON
bit 7 bit 0

/bit 7-6 ADCS1:ADCS0: AD Conversion Clock Select bits (ADCOND bits in bold) -\‘ /

ADCONT ADCOND . | bit 5-3 CHS2:CHSD: Analog Channel Select bits
<ADCSZ> | <ADCS1:ADCS0= Clock Conversion 000 = Channel 0 (AND)
[00 Fiosci 001 = Channel 1 (AN1)
01 Foscid 010 = Channel 2 (AN2)
10 Fosciaz 011 = Channel 3 (AN3)
11 FrRC [chodk dermved Trom the infemal ATD RT oscllator) 100 = Channel 4 [AN4)
; :: ;gﬁ:s 101 = Channel & (ANS)
10 FoSCeA 110 = Channel & (ANE)

\- 1 11 FRC (chock denved Trom e imemal AlD R o3ciaton) r/. \\ 111 = Channel 7 (ANT) /

~

bit 2 GO/DONE: AD Conversion Stalus bit
When ADON = 1:
1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically
deared by hardware when the A/D conversion is complete)
0 = A/D conversion not in progress
it 1 Unimplemented: Read as 0
bit 0 ADON: A'D On bit
1 = AD converter module is powered up
0 = A/D converter module is shut-off and consumes no operating current

.

CHS2 | CHS1 | CHSO Channel Pin
0 0 0 Channel0 RAO/ANO
0 0 1 Channell RA1/AN1
0 1 0 Channel2 RA2/AN2
0 1 1 Channel3 RA3/AN3
1 0 0 Channel4 RA5/AN4
1 0 1 Channel5 REO/ANS5
1 1 0 Channel6 RE1/AN6
1 1 1 Channel?7 RE2/AN7

ADCON1 Register Ox9F

R/W-0 RW-0 U-0 u-0 RW-0 R/W-0 R/W-0 R/W-0
| ADFM | ADCS2 | — | — | PCFG3 | PCFG2 | PCFG1 | PCFGO |
bit 7 bit 0
bit 7 ADFM: A/D Result Format Select bit
1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0’.
0 = Left justified. Six (6) Least Significant bits of ADRESL are read as ‘0.
bit 6 ADCS2: A/D Conversion Clock Select bit (ADCONT1 bits in shaded area and in bold)
bit 54 Unimplemented: Read as "0’
bit 3-0 PCFG3:PCFGO0: A/D Port Configuration Control bits
‘:g';? AN7 | AN6 | AN5 | AN4 AN3 AN2 AN1 | ANO | VREF+ | VREF- | C/R
0000 A A A A A A A A Voo Vss | 8/0 |
0001 A A A A VREF+ A A A AN3 Vss 71
0010 D D D A A A A A VDD Vvss 5/0
0011 D D D A VREF+ A A A AN3 Vss 41
0100 D D D D A D A A VDD vss 3/0
0101 D D D D VREF+ D A A AN3 Vss 2/1
0l1x D D D D D D D D — - 0/0
1000 A A A A VREF+ | VREF- A A AN3 AN2 6/2
1001 D D A A A A A A VoD Vss 6/0
1010 D D A A VREF+ A A A AN3 Vss 51
1011 D D A A VREF+ | VREF- A A AN3 AN2 4/2
1100 D D D A VREF+ | VREF- A A AN3 AN2 3/2
1101 D D D D VREF+ | VREF- A A AN3 AN2 2/2
1110 D D D D D D D A VoD Vss 1/0
1111 D D D D VREF+ | VREF- D A AN3 AN2 1/2
A = Analog input D = Digital /O
C/R = # of analog input channels/# of A/D voltage references
ADRESH ADRESL
worm=o) [wse] [[| [| | 1 [[] T 11
bit 7 bit0 Lit 7 it 0
T T
10-bit A/D Result Unimplemented: Read as ‘o'
worm=y [[[[[[mse[[[[[] | [[ess]
hit 7 bit0 hit 7 bit 0
N . . - .
Unimplemented: Read as ‘o’ 10-bit A'D Result

[0 L

Labsheet
7

University of Jordan
School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

ANALOG-TO-DIGITAL CONVERTER
(A/D) MODULE

IO

Name:
Student ID:

Section (Day/Time):

COMPUTER NAME:

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING
DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet 7: Analog-to-Digital Converter (A/D) Module

Name: Student ID:
Section:

Overview

In this experiment, we will use the ADC in PIC16F877A to read the temperature and display it
on two 7-segment displays without using 7-segment multiplexing. The sensor that is used to
acquire the temperature is the MCP9700. The Proteus circuit is available in the Labsheet 7
Proteus Circuit and is shown in Figure 1.

Cc1
nF
— [
c2 500z
nF
U1
E OSC1/CLKIN REDANT —23
OSC2CLKOUT RE1 ==
B RB2 2%
—5—| RAD/AND REAPOM [—=
A] RATANT RE4 |5
1.75v = RAZ/ANINVREFCVREF RES [
5] RASIANSIVRER: RBGPCC |55
4 ——{ RMIMOCKKC10UT RBW/PCD [RS
U2 RAS/AN4/SS/IC20UT
5 o7 YRVOUY B _ RCOTI0SOfTICK Z R&—
EEEN ouT ——| RED/ANSIRD. RC1TIOSVCCP2 [—o—RT0)
o @ 5| REVANSTR RC2/CCP1 |2 R
= —— RE2/ANT/CS RCHSCKABCL. T
' RC4/3DISDA ‘4 RT3
MCLRApPTHY RCSSD0 [AL
RCE/TRICK |22
V2 RCTRX/DT == 280
0.1y 19 R1
RDOPSPD R2—1—
RD1/PSP1 gf Ry ——
RD2PSP2 R
RDIPEPS (22 R
RDAPSP [—5 RO |
RD&PSPS ‘S R 1
RDEPSPE 7
RD7/PSP7 == 50
TCTEF77A

Figure 1: Proteus Circuit.

According to the datasheet, the MCP9700 sensor can measure the temperature in the range of [-
40,+125]°C and has a positive temperature coefficient of 10mV/°C, i.e. its output
increases/decreases by 10mV when the temperature increases/decreases by 1°C. For example,
when the temperature is -40°C, the output voltage is 0.1V and when the temperature increases
to-39°C the output voltage becomes 0.11V.

The chart in Figure 2 shows the relation between the sensor output voltage and the measured
temperature. From this chart, you can notice that the minimum output voltage is 0.1V which
represents the minimum temperature of -40°C and the maximum output voltage is 1.75V which
represents the maximum temperature of +125°C.

Hence, and in order to get the best performance of the ADC, we connect AN3 (Vier:) to 1.75V
voltage source and we connect AN2 (Vrer.) to 0.1V voltage source. Accordingly, the resolution of
the ADC is (1.75-0.1)/1024 or 1.6mV/step. In other words, when the input voltage
increases/decreases by 1.6mV, the ADC digital output increases/decreases by 1. Table 1 shows
the input value range and the corresponding digital output.

3.0
25
2.0

pd

"

o |
\\/‘
/

1.5

Vour (V)

1.0 MCPS700

MCP9700A
0.5

—

0.0 T T T T

50 -25 0 25 50 75 100 125
T, (FC)

st el i piplaasadiasndinnilinig

Figure 2: Voltage-temperature relationship for MCP9700.

Table 1: Input Range and Corresponding Digital Output

Input Range Digital Output

0.1V < input voltage < 0.1016V 0
0.1016V < input voltage < 0.1032V 1
0.1032V < input voltage < 0.1048V 2
0.1048V < input voltage < 0.1064V 3
0.1064V < input voltage < 0.1080V 4
0.1080V < input voltage < 0.1096V 5
0.1096V < input voltage < 0.1112V 6
1.7468V < input voltage < 1. 7484V 1022

1.7484V < input voltage < 1.75V 1023

Based on this, we can conclude that when the temperature changes by 1°C the output voltage of
the sensor changes by 10mV which causes the ADC digital output to change by

102 s 16 2L ~ g 2P (1)
C Step C

In other words, the ADC output increases/decreases by 6 approximately when the temperature
increases/decreases by 1°C. We can use this conclusion to simplify reading the temperature

when we write our program instead of performing calculations using the equations we have in
the tutorial.

Prelab

You are required to modify the program in the ADC Example Code.ASM to read the temperature,
convert it to two BCD digits, and display it on the 7-segment displays. The ADC is configured as
follows:

® Viers = AN3, Vier = AN2

e RAS5 or channel4 is the ADC input

o ADC output is right-justified

e ADC clockis Fosc/8

What are the values to be stored in ADCONO and ADCON1 register?

ADCONO = ()2

ADCON1 = ()2

The system should show only the temperature when it is in [5,35]°C range, otherwise, the
system shows OXEE on the displays. Using equation (1), what are the binary and decimal
values in ADRESH and ADRESL registers that correspond to the required range? Notice
that ADRESH will hold the most significant bits of the conversion result since we chose
the result to be right-justified. Remember that a temperature of 5°C implies 45°C
increments from -40°C.

ADC Result
Temp. ADRESH ADRESL
§
N
ADRESL = ()10
ADRESH = ()10
In Lab

Modify the code in order to read the digital output of the ADC and then convert to a 2-digit
temperature in °C displayed on a 2-digit 7-segment display only when the temperature is in the
range of 5°C to +35°C. In order to do that, you need the following:

Reading ADC Result: You need to read the ADC result from the ADRESL and ADRESH
registers and store them in RL and RH locations, respectively.
Converting the ADC Result to Temperature: to convert the ADC result to actual
temperature, we need to divide it by 6 then subtract 40 (WHY?). However, the ADC result
is 10 bits (the most significant two bits in RH and the least significant 8 bits in RL) and
our microcontroller is 8-bit. So, we can’t do the calculations on the ADC result directly.
Alternatively, we express the ADC result in RH::RL by

ADCValue = RH, x 2° + RHy x 28 + RL (2)
Where RH; and RHp are bits 1 and 0 in RH, respectively. Mathematically, we can break

down the calculation of the temperature to

9 8
RH1x2 +12H0><2 *RL _ 40 3)
Temperature = RHy X 85 + RHy X 44 + - — 40 4)

Accordingly, write the subroutine CONVERT_TEMP to convert the values in RH and RL to
actual temperature using equation (4) and store it in location RESULT.

Temperature =

e Check Temperature: write a subroutine CHECK_RANGE to check whether the value in
RESULT is in [5,35]. If the temperature is in range, store 1 in location VALID. Otherwise,
store 0.

e Convert to BCD: Modify the CHANGE_to_BCD subroutine to convert the temperature
value in RESULT into two separate BCD digits instead of three.

e Display: Modify the DISPLAY subroutine to display two digits instead of three without
using 7-segment multiplexing. The units digit is shown on PORTD while the tens digit is
shown on PORTC. The subroutine should check if VALID is 0 or not in order to show the
temperature if it is in range or to show 0xEE otherwise.

; Copy and paste your code here

Ask your engineer to check the simulation

University of Jordan
School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Experiment 8: The USART

Objectives
Introduce the USART module of the PIC 16series through an industrial example.
To become familiar with the serial communications using PIC and RS232 Protocol.
Become familiar with serial communication testing techniques either in software and

hardware.

Written by Eng. Enas Jaara - Revised by Prof. Iyad Jafar

1. Introduction

The wuniversal synchronous asynchronous receiver transmitter (USART) is one of serial
communication modules available in PIC16F87x microcontroller. When operated in the asynchronous
mode, it can be used to send and receive data simultaneously, i.e. full-duplex mode. In this mode, 8-bit
data is sent/received along with a START and STOP bits as frame. Optionally, a parity bit can be added
to the frame to aid detection of odd errors. Figure 1 shows one frame.

Start

S
bit o
First Last
data bit data bit
Start : Extra ‘parity’ Earliest possible
synchronisation bit could be new Start bit

inserted here

Figure 1: Contents of one frame.

The block diagram of the asynchronous transmitter is shown in Figure 2. There are several registers
that are associated with using the asynchronous transmitter. These are listed in Figure 3. In order to
use this transmitter, you need to consider the following steps:
1. The output of the transmitter appears on pin RC6; hence we need to clear TRISC<6> bit to
configure RC6 as output.
2. Specify the transmission rate by specifying the values of the SPBRG register and BRGH bit in
the TXSTA register (more on this later).
3. Enable the USART module by setting the SPEN bit in RCSTA register and configure it in
asynchronous mode by clearing the SYNC bit in the TXSTA register.
4. If interrupts are desired, set the TXIE in the PIE1 register, GIE and PEIE bits in the INTCON
register.
5. Enable transmission by setting the TXEN in the TXSTA register. This will set the TXIF flag bit
to indicate the TXREG is empty.
6. If 9-bit transmission is desired:
a) Setthe TX9 bit in the TXSTA register.
b) Store the ninth bitin TX9D in the TXSTA register.
7. Store the data to be transmitted to TXREG register to start the transmission.

F Data Bus

TXREG Register |

T e

U, S TSRRegister ! RCB/TX/CK pin

—
SPEN

Baud Rate Generator

Figure 2: The block diagram of asynchronous transmitter.

Val ; Value on
Address | Name | Bit7 | Bit6 | Bit5 | Bitd | Bit3 | Bit2 | Bit1 | Bit0 aMEOn: | all other
POR, BOR

Resets
0Bh, 8Bh, |INTCON GIE PEIE |TMROIE| INTE | RBIE | TMROIF [INTF ROIF 0000 000x | 0000 000w
10Bh, 18Bh
0Ch PIR1 PSPIFi! | ADIF RCIF TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF 0000 0000
18h RCSTA SPEN RX9 | SREN | CREN — FERR | CERR RX8SD 0000 -00x
19h TXREG [USART Transmit Register 0000 0000
8Ch PIE1 PSPIE™ | ADIE | RCIE TXIE | SSPIE | CCP1IE | TMR2IE | TMRI1IE 0000 0000
98h TXSTA CSRC TX9 TXEN | SYNC — BRGH TRMT TX9D 0000 -010
99h SPBRG [Baud Rate Generator Register 0000 0000

Figure 3: Registers related to the asynchronous transmitter.

Similarly, the block diagram of the asynchronous receiver is shown in Figure 4 while the related
registers are shown in Figure 5. The steps for using the asynchronous receiver are as follows:

1.

9.

The input of the receiver is from pin RC7; hence we need to set TRISC<7> bit to configure RC7
as input.

Specify the transmission rate by specifying the values of the SPBRG register and BRGH bit in
the TXSTA register (more on this later).

Enable the USART module by setting the SPEN bit in RCSTA register and configure it in
asynchronous mode by clearing the SYNC bit in the TXSTA register.

If interrupts are desired, set the RCIE in the PIE1 register, GIE and PEIE bits in the INTCON
register.

If 9-bit reception is desired, set the RX9 bit in the RCSTA register.

Enable the reception by setting bit CREN in RCSTA register.

The RCIF flag in PIR1 will be set when reception of one word is complete and an interrupt will
be generated if RCIE is set.

Read the RCSTA to get the 9th parity bit and determine if any error occurred (OERR, FERR
bits).

Read the 8-bit received data by reading RCREG.

10. If any error occurred, clear the error by clearing the CREN.

,_ x64Baud Rate CLK OERR FERR
: : CREN
Fosc SPBRG I S f __________ I _______
' ! +g:1 ' RSR Register LSb !
" Bad Rate Generator |16 ‘ | 7 oo ‘ o san ‘ :
RC7RX0OT T

Pin Buffer Data
and Control Recovery

SPEN

RX9D| RCREG Register
FIFO

8

Interrupt Data Bus

RCIE

Figure 4: The block diagram of the asynchronous receiver.

Value on: Value on
Address | Name Bit 7 Bit 6 Bit5 Bit4 | Bit3 Bit 2 Bit1 Bit0 . all other

POR, BOR

Resets

0Bh, 8Bh, [INTCON| GIE PEIE [TMROIE| INTE | RBIE | TMROIF | INTF ROIF | oooo oDoox | 0000 000U
10Bh, 16Bh
OCh PIR1 PSPIFI | ADIF RCIF | TXIF |SSPIF | CCP1IF | TMR2IF | TMR1IF | oooo oooo | cooo oooo
18h RCSTA | SPEN RX9 SREN | CREN — FERR | OERR | RX9D 0 -00x
1Ah RCREG |USART Receive Register 0 0000
8Ch PIE1 PSPIE!")| ADIE RCIE | TXIE |SSPIE | CCP1IE | TMRZIE | TMRIIE 0 0000
98h TXSTA | CSRC TX9 TXEN | SYNC — BRGH | TRMT | TXSD 0 -010
99h SPBRG |Baud Rate Generator Register 0000 0000

Figure 5: Registers related to the asynchronous receiver.

To specify the transmission/reception baud rate, you need to specify the values of the SPBRG register
and the BRGH bit in the TXSTA register. These values along with the frequency of the PIC clock are
used to determine the baud rate using one of the following formula

64(S£;;CG+1)' BRGH =0

Baud Rate = Fosc (1)
—— , BRHG =1
16(SPBRG+1)

Alternatively, you can use the tables in the datasheet to find the proper values for SPBRG and BRGH in
order to have specific baud rate at certain Fosc.

The information presented previously serves as a quick overview of the USART. You are

strongly recommended to review the topic from the textbook or from the datasheet in case you
feel that you are missing some details.

2. USART Example

In a certain factory, a modern computerized machine is serially connected to a control computer. The
machine has a PIC16F877A microcontroller and uses its Universal Synchronous Asynchronous
Receiver Transmitter (USART) module to communicate with the computer. When the machine is
powered on, it sends the message “Machine ready to receive commands” to the control room
indicating that it is ready to receive commands. After receiving the message by the computer, an
operator sends commands to the machine through the control computer. In this experiment, since the
there is no physical machine to carry out the commands, the commands will be simply displayed on 7-
segment display.

[t is required to write a program for the PIC to perform the required operation. The general flow of the
program is as follows:
o Initialize I/0, enable interrupts, configure USART settings (baud rate, transmitter and receiver
settings).
e Send message to control computer.
e Wait until command is received from control computer. When received, show it on the 7-
srgment display.

The following steps details the operation of the program.

Step 1: Initialization

e PORTD will be connected to the 7-segment display to show the received commands. It is
configured as output.
e USART pins
o RCé6 is used by the USART transmitter. So, it has to be configured as output.
o RC7 is used by the USART receiver. So, it has to be configured as input.
e USART Configuration:
o We will use the USART in asynchronous mode, so (SYNC = 0).
o Enable serial port (SPEN = 1), enable receiver (CREN = 1), enable transmitter (TXEN = 1)
o The Baud rate to be used is 9600 bps. Assuming the PIC is running at 4MHz, review
datasheet or do hand calculations to find that SPBRG has to be filled by 25 and high baud
rate will be enabled (BRGH = 1) in order to communicate at this rate.
e Interrupts: the PIC will use the receiver interrupt to know when a command is received. So, we
need to set (GIE = 1), (PEIE = 1) and (RCIE = 1).

Step 2: Sending Message to Control Computer

When the machine starts, it should send the message “Machine ready to receive commands” to the
host computer. The message has 33 characters and will be stored in a lookup table called Message
with the first entry being letter “M” and last entry being letter “s”. The table will be accessed 33 times
in a loop to read all the letters. The loop variable INDEX is initialized to 0 and is incremented every
time a letter is sent. When it reaches 33, this implies that whole message is sent.

In order to send each character serially, it has to be stored to the transmitter register in the USART
(TXREG). The character is sent serially if the USART is configured correctly. However, whenever we
send a character, we need to make sure that the previous one is sent; otherwise, it will be overwritten.
In order to avoid that, we have four different approaches:
e Poll the TXIF interrupt flag found in PIR1 register which is set when the TXREG is empty
o Poll the TRMT flag found in TXSTA register which is set when the data when the transmission
of data is completed (This is the approach used in the program).
e Enable the USART transmitter interrupt and write an interrupt service subroutine to send the
next character.
e Insert a sufficient delay between writing characters to the TXREG. For example, if the speed is
9600 bps, this implies that the time required to transmit a 10-bit frame is 10/9600, which is
1.041ms approximately.

Step 3: Waiting for Commands from Control Computer

After the whole message is sent, the code goes into an infinite loop waiting to receive commands from
the control computer. The commands will be received serially and placed in the RCREG. When a whole
frame is received in the RCREG, the RCIF flag in the PIR1 register is set. So, in order to decide whether
a command is received or not, we can:

e Poll the RCIF flag in the PIR1 register.

e Enable the USART receiver interrupt and write an ISR to read the RCREG when the interrupt

occurs (This is the approach used in the program).
e Read the RCREG periodically at sufficient time interval.

While receiving the commands from the control computer, it is important to check if there are errors
in the received data. There three types of errors in serial communication:

e Framing errors - This error occur due to the difference in the speed of communication
between the transmitter and receiver (not correctly set to match each other). This error is
detected when a stop bit is received as CLEAR and the framing error bit (FERR) in the RCSTA
register is set to indicate occurrence. The FERR bit is set/cleared for every frame received to
indicate if there is speed mismatch. Therefore, the FERR value will be updated with every
coming frame and it is necessary to read RCSTA value before RCREG and test this bit to check
if we are receiving the data correctly.

e Overrun errors - The receiver module has a two-level deep buffer in which the received data is
stored. Data received in the RSR register ultimately fill the buffer. However, if the two buffer
locations are already occupied, and a third frame of data is being shifted into the RSR, once it is
complete, it will not be stored in the buffer and thus be lost, and hence an overrun error
occurs. Flag OERR in the RCSTA register is set to indicate this error occurrence. Once this
OERR bit is set, no further data is received! The FIFO buffer is cleared by reading data in the
RCREQG, that is, it needs two RCREG reads to empty the buffer! Furthermore, once set, the
OERR bit can only be cleared in software by clearing and setting the CREN bit. To avoid

overrun errors, the user should always make sure to read data at appropriate speeds such that
the buffers won’t become full!

e Parity Errors - This error is used to detect odd number of erroneous bit transmissions. This is
done by enabling the 9t bit mode in the RCSTA register “RX9 bit”. However, no hardware is
present to calculate and check for parity, therefore, the sender should write appropriate code
to calculate desired parity (odd/even) and place the result in the TX9D pin in the TXSTA
register before sending the frame. An equivalent code should read the received parity RX9D
from the RCSTA register calculate parity and check for a match!

Step 4: Displaying Commands

When a command is received by the PIC, it has to display them on a common-anode 7-segment
displays. The received commands are basically the numbers 0 through 9. Thus, the program uses a
lookup_TABLE table to convert the command into 7-segment code and output it to PORTD that is
connected to the display.

The code for the whole program is available in the USART Example.ASM file and it is listed below for

1

2 te machine i

3 sends a message

4 ing the message, an oOf

15 ment, since the there 1is

6 played on 7 segment d

7

8

£

10 in

11

12

13 5 segment ¥

14 mnected to 7-Segment Digit Enable

15 __CONFIG DEBUG OFFs CP OFFs WRT HALF& CPD OFFs LVP OFFs BODEN OFF& PWRTE OFFs WDT OFFa XT OSC
16

17 P L T T T L LT L T T
18 include "plef877A.inc"

20 ; User-defined

21 cblock 0x20

22 WTemp ; Must be reserved in all banks

23 StatusTemp ; reserved in bankO0

24 Counter

25 BLNECNT

26 INDEX

27 endc

28 cblock 0Ox0a0

29 WTempl

30 endc

131 cblock 0x120

132 WTemp2

33 endc

134 cbhlock 0x1a0

I35 WTemp3

136 endc

137 FEEE:

138 ; Macro Assignments

139 push macro

140 movwf WTemp ;WTemp must be reserved in all banks
41 swapf STATUS, W i 1t affecting status bits
142 banksel StatusTemp ; tatusTemp bank

143 movwf StatusTemp ; TATUS

144 endm

145

146

47 Pop macro

48 banksel StatusTemp

149 swapf StatusTemp, W

150 movwi STATUS to where W was stored)
151 swapf WTlemp, F :

152 swapf WTemp, W ithout affecting STATUS
153 endm

5.4 | p ke ke ke i ko R ko ok ok ok Rk ke ko ek ok Rk ok e Rk
155 ; Start of executable code

156 org 0x00 ; Reset Vector

157 goto Main

158 org 0x04 ; Interrupt Vector

159 goto IntService

60 AhkhkhAhAhhhhhdb bbb dhhhdhi

61

62 ation, this code sends the message: "Machine ready to receive commands" then goes into
63 ing whi th m is interrug if a is r
64

Initial

movlw D'25" ; This sets the baud rate to %600
banksel SPBRG ; assuming BRGH=1 and Fosc = 4.000 MHz
movwf SPBRG
banksel RCSTA
bsf RCSTA, SPEN ; Enable serial port
bsf RCSTA, CREN ; Enable Recsiver
banksel TXSTA
bef TXSTA, SYNC ;i Set up the port for Asynchronous operation
bsf TXSTA, TXEN ; Enable Transmitter
bsf TXSTA, BRGH ; High baud rate used
banksel PIE1l
bsf PIE1l,RCIE ; Enable Receiver Interrupt
banksel INTCON
bsf INTCON, GIE ; Enable global and peripheral interrupts
bsf INTCON, PEIE
banksel TRISD ; PORTD is used to display the received commands
clrf TRISD
clrf TRISA
bef TRISC, 6 ; Configuring pins RCEé as o/p, RC7 as i/p for
bsf TRISC, 7 ; serial communication
movlw 6
movwi ADCONL
banksel DORTD
clrf PORTD
clrcf PORTA
clrf PORTA
return
3R kR R Rk Rk kR R kR R Rk R kR kR R R kR Kk K
Main
call Initial
MainLoop
clrf INDEX ; Prepare to send first character in the message
; MSG = 0, then incremented by on to access every
; character in look up table.
SEND
movf INDEX, W
call Message
movwf TXREG
TX_not_done
banksel TXSTA ; Polling for the TRMT flag to check
btfss TXSTA, TRMT ; 1f TSR is empty or not
goto TX_not_done
banksel INDEX
inecf INDEX, F ; Move to next character in string
movlw .33 ;i Check if the whole message has been sent
subwf INDEX, W ; "Message length = 33"
btfss STATUS, 2
goto SEND
Loop
Goto Loop ; When whole message is sent, loop and wait

; for receiver interrupts.
PR R AR AR A AR AR AR A AR AR AR AR KA A AR A AR A A AR A A A Ak AR R AR AR A AR A AR AR AR AR AR R A AR R ARk Ak A AR Ak

; Interrupt Service Routine

IntService
push ; push W and STATUS
btfsc PIR1, RCIF ; Check for RX interrupt
call RX_Receive
pop 7 pop W and STATUS
retfie

P S e e RS S S

R¥ Receive

; Pass the value of RCREG to PORTD
R

recommendsd to detect for serial transmission errors

; Uncomment the following piece of code if error detection is required. Note that it is
.-*i**{i*{i**i**i**{i*{i**i**i**{**{i**i**i**{**{i**i**i**i**{i**i**i**i**{i**i**i**i*

;banksel RCSTA

;btfsc RCSTA, FERR ; Check for framing error
;goto FramingError

sbtfsc RCSTA, OERR ; Check for Overrun error
;igoto OverrunError

banksel RCREG

movE RCREG, W

banksel PORTD

CALL LOOk_TBELE

MOVWF PORTD

return

PR

Look TAELE

ADDWF PCL, 1

RETLW B'll000000"
RETLW B'llilioolr
RETLW B'10100100"
RETLW B'10110000"
RETLW B'l0011001"
RETLW B'10010010"
RETLW B'10000010"

RETLW B'11111000"

159 RETLW B'10000000"
1e0 RETLW B'10010000"
161 ARk ko ok ok kR Rk ko Kk ok B e e ke ke ok ke ke ok ok ke ok ok ke ok R ok ok ok ok ok ok ok R ok ke ok ok ok ok ok ok R ok ok ok ok ok k
lez Message

1e3 addwf PCL, F
164 retlw

165 retlw

166 retlw

167 retlw

1le8 retlw

168 retlw

170 retlw

171 retlw

17z retlw

173 retlw

174 retlw

175 retlw

17e retlw

177 retlw

178 retlw

178 retlw

180 retlw

i81 retlw

182 retlw

183 retlw

184 retlw

185 retlw

ise retlw

187 retlw

188 retlw

188 retlw

180 retlw

191 retlw

192 retlw

193 retlw

194 retlw

195 retlw

196 retlw

197 END

198 e Ak kA

3. Simulating and Testing in MPLAB

At first glance, you might think that you cannot test your code unless you have a physical control PC
and a machine at home!! Surely this is not feasible. Therefore, we will now introduce you to testing
USART serial communication in MPLAB IDE.

To test transmitting the data from the PIC, do the following after you build your project:
1. From the Debugger Menu, Select Tool - MPLAB SIM.
2. From the Debugger Menu, Settings - select UART1 IO.
3. The following screen will show up.

Simulator Settings L5]
Code Coverage I Animation / Realtime Updates I Limitations ‘
Osc / Trace I Break Cptions | SCL Options | Ua1 10

Debug Options
[¥] Enable Uart1 10

Input File: Browse....
[] Rewind Input
Output
@ ‘Window
©) File
OK || Cancel || Apply |

4. Select Enable UART IO.

Choose to show the output on Window. Click OK.

6. Now,if the output window is not already shown, go to View = Output. Notice that a
new tab (SIM Uart1) has shown up as shown below.

U

5] Qutput

| Build | ersion Contral | Find in Files | MPLAB SIM | SIM Uart1

Now run the program. You will see that the message has appeared in the Uartl 10 window which we
have already enabled.

= | Output [F=1 o=
Build | Version Control | Find in Files | MPLAB SIM | SIM Uart]

Machine ready to receive commands

To test receiving the commands from the computer, we will use the Stimulus tool that we
introduced in Experiment 3. The procedure will be revisited here again:
1. Debugger - Stimulus >New Workbook
2. Inthe Async tab choose RCREG, and set the action as Direct Message, in the Message field type
in the character you wish to send as shown below.

| Stirulus - [Untitled] =N =R

Azynch | Fir / Register Actions | Advanced Fin / Register | Clock Stimuluz | Register |njection I Fieqister Tracel

Fire |Pin/SFR | Action Width | Unitz | Comments / Message
> |RCREG Direct Message 7

3. Place a break point at instruction goto IntService.

4. Run the program and wait until the message “Machine is ready to receive commands” is shown
on the output window.

5. Now, click on Fire. The program execution stops at goto IntService. Step into the code.

6. Once you finish stepping in the RX_Receive subroutine, you should see that PORTD has the
value of “11111000” which is the code for 7.

Labsheet
8

University of Jordan
School of Engineering
Department of Computer Engineering
Embedded Systems Laboratory 0907334

-~ (Weres T, VAV

it

444

Name:
Student ID:

Section (Day/Time):

COMPUTER NAME:
UNIVERSITY OF JORDAN

SCHOOL OF ENGINEERING
DEPARTMENT OF COMPUTER ENGINEERING

EMBEDDED SYSTEMS LABORATORY CPE0907334
Labsheet 8: The USART

Name: Student ID:
Section:

(Pre-lab) Part1: The operation of the USART Module and the related TXSTA, RCSTA and SPBRG
settings

Q1) What are the values of the following registers: TXSTA, RCSTA and SPBRG that should be
initialized with, to configure USART module as follow:

1. Setting the baud rate to 1200 with low speed.

2. Enable s continuous receive and transmitter module.
3. 8-bit transmission and reception.

4. Setup the USART port for Asynchronous operation.

Register 7 6 5 4 3 2 1 0
TXSTA
RCSTA
SPBRG

Q2) Write the necessary instruction(s) required for enabling the USART receiver interrupts.

Q3) For the USART example explained in the tutorial, what changes should be made to the code
in order to send the message “Machine is Ready”?

Part 2: Coding

In the Labsheet 8 Proteus Circuit, you will find two microcontrollers; PIC1 and PIC2, that have 4
MHz clock and are supposed to communicate serially. PIC1 has four switches connected to the
lower 4 bits of PORTB while PIC2 has two switches connected to RC1 and RCO. PIC1 has a green
and red LEDs connected to RC1 and RCO, respectively, and PIC2 has a 7-segment display
connected to PORTB.

When the system starts, PIC1 is supposed to read the four switches and send them to PIC2
serially and then waits for PIC2 to send an acknowledgment. If the received acknowledgement
contains 0xCC, the green LED is turned on. In case the acknowledgment has a value of OxEE, the
red LED is on. PIC1 repeats these operations indefinitely.

When PIC2 receives the values, it should read the two switches connected to it and then add the
read value to the received value. If the resultis less than 10, then it is displayed on the 7-segment
display connected to PORTB of PIC2 and an acknowledgement message containing the value of
0xCC is sent to PIC1. Otherwise, PIC2 should display OxE on the display and send an
acknowledgement message with value OxEE to PIC1.

Hints:
e Note that the transmitter and the receiver in the USART in PIC1 and PIC2 should be
enabled.
e Use baud rate 19200 assuming BRGH=1 and Fosc = 4.000 MHz.

Ask your engineer to check the run.

University of Jordan

Faculty of Engineering and Technology
Department of Computer Engineering
Embedded Systems Laboratory 0907334

Labsheet
3-B

CARA 0
B Y R AGT]
DF

-
e

;- % . . i

A ” 11111 e

Name:
Student ID:
Section (Day/Time):

Lab 3 Hardware Exercise

In this tutorial we will guide you through the steps to build your first hardware circuit, it is a simple circuit based on 16F84A PIC which
drives a 7-segment display to show the numbers from 0 to 9 continuously. The PIC is already programmed and placed for you!

This basic circuit uses the following components (you should have read the “Guide to Hardware I” by now and familiarized yourself with all
the hardware components listed before coming to the lab!):

We will use a 16F84A PIC, A 7805 regulator, two 22pF capacitors, a 7-segment display and required resistors!

Since this is your first hands-on experience with hardware, and to ensure that the circuit works with you we will specify all the
interconnects you need, this is necessary for many students have no basic foundation in electronics or basic circuit construction.

The Breadboard layout below is to refresh your knowledge about breadboard structure: (The line in Purple represents that these spaces are
internally one node)

L T T [[[1 [[[T T [[T T T [T [[T JT_ T[] ----———————————————————————:

9] 5 WNMNMNMNMNMNMNMNNRNRRERERRRBR R R 2
N =] OCVWNNONBOUNROLONONARNRPINOURWNE
Al 1 1 1 LA
B | | | ile
c | | | Il c
D | | | il
E L L L "E
F | | | JLF
G | | | Ils
H | | | IlH
! | | | I
] L] L] L] Ij
0\0\01U101U1U1LHU1U1U1LﬂhhhhhhhhhhuJUJUJUJUJUIUJUJUJUJI\JI\JI\JI\JI\JNNNNNHHHHHHHHHHmmHmmthH
RFOoOWUW~-NOUhLWNROQUOSNNOTUEAEWNROUOUVOSNOOTUVNAWNROQUOUOSNOOUTEWNRQOQUOUONOURBWNEDO
| e e A S N s s s A O O

Follow the following steps to construct the circuit

Step 1: Ensure that the power connections are as follows, We will use the +15V adjustable power knob as Input power source to the
regulator, place the knob at the direction indicated, this means an approximate power of 7 - 8 volts!

In this experiment we will use the following color coding:
Blue: to connect to ground!
Orange: To connect to power supply

Green: to connect between all other components!

ENNEEEENEEENNEENNREEEEEREEEEE
L

WWWEWKNNNNNNMNNNMNR,RRRR R R R R e
R OB AR R NN e U G EBRE YN R W NE

m(Q|O| o

b |= | T (@™

Step 2: Interfacing all the necessary components to power up the PIC and provide oscillation! Connect the 7805 regulator, the 4MHz
oscillator (with the required 22pF capacitors) and the MCLR pin as follows:

The dots inside the regulator and the oscillator indicate that the pins are directly below them such that you will know where exactly to place
them!

G nbbbbbbbLALELEWWWRRERWWROMNMNMNRANRK NNNNI—'HHHHI—'HHHHmmHmmthH
ROV~ LAEWNREFOUOSIOURWNROOUOUOSIOOUARWNREOWOLO~OWU WMNRFREFOOOUO~IOUR_RWNRED
A ! HEE A
B] B
c C
D D
E i T s T s O s s s e e E

szzazsozzz

= d

.,

EE:2:E:mEgae ==
F e | [| []]] F

| T 1T 1 | T 1T T 1 T 1 |

G [™ G
: = KN "
1 1
J L | Lplel J
oo bbb EBWWWEWEEWEREWWWWRNMNMNRMNDRKR PR e e e e "mmummhwwl—-
RFOouUus~sIOOUNLBWNREROOUNDSIOOCULARWNROOUND~SIOOUVLABWNRERODOUD~ OO & RowuosIaonhkwMN [}

Step 3: Interfacing RBO - RB3 to segments A to D! Note that the resistors are needed to limit the current to the LEDs making up the 7-

segment such that it will not burn out (Note: some 7-segments have high internal resistors values and do not necessarily require external
resistors!)

I

m OO |m| B>

AL
A

0w

Qon =[]
(g0 w00

[Qiso i)
[ov]

Qo e

VoY
\

0

(= QY™

RNV BWNE

"R
RAd
TR
(]
RE)
Rl
kil
R

Step 4: Interfacing RB4 - RB6 to segments E to G!

Lo~V LWwNE

1008V

R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE NN i
AR ABANAAAAAAABANAIAII I I I I IIIAEISEIEIIEIOE RN NS >
R |
AAANAAAAAAABANIAIIIIIIIIIIIAIEIIEIISEIACEN BB RS -
R R R e
2BR22B8U8008RIBEES55EL82588480LBRBRBNRRREREE L

1

S e e e ecesss sesse

A A B e P EEE s e s s seees seees
e “e e e e sesee saes

e e oL ceese saees aw

L R R

Crecooero
eeen

Circuit on breadboard

Your circuit on breadboard should be similar to this picture

Ask your engineer to check the circuit.

GUIDE TO HARDWARE |

Required Study Material

Prepared by Engrs. Ashraf Al-Suyyagh — Enas Ja’ra

We present this guide to serve as a reference for
many electrical and electronic components
which students are to use throughout the lab course
and the final project. We attempt to cover all
required material such that all students will be on the
same level of basic knowledge. The components are
presented in the context of their use in embedded
systems where they are interfaced with
microcontroller devices.

1. CLOCKING SOURCES

Microcontrollers need clocking sources to
synchronize their functions. An ideal clock is a
square wave function. There are two components
which provide such capability: oscillators and
resonators. Basically the faster the clocking source;
the faster the processing speed. However, fast
processing also requires more current and therefore
generates more heat. PIC 16F series can operate up
to 20MHz whereas the 18F series has an operation
speed of up to 40MHz. Details of operation
principles, interfacing and calculations are presented
in these following subsections

1.1. Oscillators

Oscillators usually built from crystal (most notably
Quartz crystal- as in wristwatches) have simple
operation principle: The use of the mechanical
resonance of a vibrating crystal of piezoelectric
material to create an electrical signal with a very
precise frequency. To make things clear: we will
start to define terms and simplify operation
principles; a piezoelectric material is one which has
the characteristic of changing shape when voltage or
an electric field is applied to it then reverts back to
its original shape once the induced voltage/electric
field is removed. While switching back to its
original state, the material itself generates an electric
field and thus a voltage with very precise frequency
which is the oscillator frequency. So simply, to get
the oscillator to work, feed it with voltage at one pin
and use the output frequency from another. In this

manner, the oscillator can be modeled as an RLC
circuit with a specific resonance frequency as you
should have already learnt in the Circuits Il course.
Yet, since crystals are mechanical devices which
vibrate at their resonance frequency, they are not
that precise, that is, they don’t produce an ideal
square wave function of which the high level of the
signal is fixed at 50% of the period’s time, and
instead it can be any time in between 40% - 60% of
the period. Therefore, to account for such errors, the
clock signal is divided by a certain fixed value to
minimize error effects, in the PIC MCUs, the input
clocking source is divided by four. In that manner,
every four pulses of the original signal will generate
one pulse in the new signal.

Figure 1 below further clarifies the idea; the top
signal is an ideal square wave signal, the duty cycle
of which is exactly half the period. Notice how the
middle signal — the actual signal as generated from a
clocking source — deviates from the ideal, the duty
cycle differs (red). By dividing the cycle by a fixed
value — bottom signal — we minimize the errors for
the new signal hides the frequent changes in between
successive pulses.

L ML LT LML][asiissm

| | Actual Clock

Pe—

AN N A

Figure 1 - Clock

Oscillators come in variety of form factors and
speeds. Figure 2 shows two common form factors of
oscillators, the 2-pin oscillator (left) and 4-pin
oscillator (right). You can place the 2-pin oscillator
in either direction on the OSC pins of the
microcontroller, the 4-pin oscillator only uses three
pins and the forth is not connected, the pins are
GND, Vcc and output. Refer to the datasheet of the
oscillator to determine which pin is which.

Figure 2 - Two Common Shapes of Oscillators

After connecting an oscillator, one should explicitly
specify to the PIC which oscillator speed range and
type it should expect. This option can be set in either
the MPLAB configuration bits window prior to
programming or by explicitly specifying it in the
configuration word in the source code. There are
four options:

o XT —Crystal: 1-4 MHz
HS — High Speed: >= 4 MHz, and with
ceramic resonators.

e | P —LowPower: <=200 KHz,

e RC - Resistor-Capacitor (if you build the
resonance circuit by yourself)

Along with the crystal, two capacitors of
approximately (10-33) pF are required, crystal needs
loading capacitors to work at the exact operating
frequency (i.e. to get a stable oscillation from the
crystal oscillator) and for noise immunity. An
important note though is that the operating
frequency is not fixed and that it varies with
temperature. The advertised frequency is usually
specified at room temperature 25°C, clocks slow
down when temperatures increase or decrease from
the nominal room temperature. For accurate timing
one needs to know the operating frequency at
different temperatures, for this we can use the
following formula (assume all other parameters are
at their recommended values):

F=Fo(l-Px(T-Tp))

Where:
e T isthe expected temperature in Celsius
e Ty room temperature 25°C
e [, advertised oscillator frequency
e F actual frequency attemp T

e P is the frequency stability coefficient
(obtained from datasheet — units in ppm)

Example:

A 32 kHz oscillator with a frequency stability
coefficient of 0.004 ppm running in arid
environment where average temperature is 35°C will
actually have an oscillation frequency of:

32000(1 — 0.004 (35-25)) = 19.2kHz!!

From the above example, we clearly show the
importance of considering temperature effects upon
the frequency of operation.

Figure 3 shows a typical crystal interfacing to a PIC

33[3': 1 [11

||
[L[12
1 X% s osct/oLkIn
33pF €2 —T— 4MHz
P I rE 14 0SC2/CLKOUT
15

Figure 3 - Interfacing a 4MHz Crystal to PIC16F877A

1.2. Resonators

Resonators are made of high-stability piezoelectric
ceramics and share the same operating principles of
oscillators but differs in that it consists of a voltage-
variable capacitor that acts in some ways like a
guartz crystal. The thickness of the ceramic substrate
determines the resonance frequency of the device.
Resonators have either two or three pins. They need
not loading capacitors. They have a similar
connection as the oscillator in Figure 3, if a three
lead resonator is used the middle pin is connected to
GND. Figure 4 shows a typical resonator.

Figure 4 - A Typical Resonator

2. REGULATORS

A voltage regulator is an electrical regulator
designed to automatically maintain a constant
voltage level at the output given varying voltage at
the input. Depending on the part number and
manufacturer specifications, regulators can take a
limited range of input voltages and produce a limited
range as well. Regulators most often have metallic
heat sinks attached to dissipate heat more efficiently.
Many commercial regulators regulate fixed voltages,
commonly 3, 5, 9, 12 and 15 volts. One must be
cautious to the input and output currents to and from
the regulator, too much input current than specified
will overheat and eventually burn the device. Too
much load current will have the effect of regulator
output voltage drop!

There are two main series of regulators: the 78xx
and 79xx series. The 78 represents a family of
regulators which regulates positive voltages and the
79 family regulates negative ones. The xx part is the
output voltage of the device.

Examples:
e 7805: 5V DC Regulator
e 7905: -5V DC Regulator
e 7808: 8V DC Regulator
e 7909: -9V DC Regulator

Regulators have three pins, one connected to the
input voltage source, another to the circuit and the
middle one is shared ground in between the input
source and the circuit. Figure 5 shows a typical
regulator.

Figure 5 - A Typical 7805 Regulator

2.1. More on Regulator Heat Sink

The heat sink is a component designed to lower the
temperature of an electronic device by dissipating
heat into the surrounding air. As a general rule the
input voltage should be limited to 2 to 3 volts above
the output voltage. The LM78XX series can handle
up to 36 volts input, be advised that the power
difference between the input and output appears as
heat. So heat which will be dissipated by the chip
during the voltage regulation process. This can cause
the chip to heat up, and so a heat sink is often used
to speed up heat removal and prevent overheating.

Figure 6 shows a typical in-circuit connection for the
7805 regulator. A couple of coupling capacitors
(between 10 uF and 47 uF) are required on the input
(V-IN) and output (V-OUT) and connected to
ground. Coupling capacitors are used for good
regulation and to reduce unwanted AC signals riding
on DC supply circuits (Noise)

olI
.||
Q

Figure 6 - 7805 Circuit Diagram

3. PIC RESET CIRCUIT

As you should have already learnt in the course, PIC
MCUs already have a master clear pin called
MCLR, keep in mind that this is an active low pin.
Therefore, PIC reset circuitry is simply constructed
by wiring a switch to MCLR, and when pushed
gives logical ‘0’ or GND to this pin. This has an
effect of resetting the microcontroller, clearing all
RAM and starting program execution from the
beginning. A pull up resistor circuitry is used to
hold the input at logic “1” state as long as the reset
button is not pressed. Figure 7 shows the circuit
diagram of the reset circuitry.

VICC

S1 K
RESET o
i 1 _
I MCLR/Vpp/RE3
= 2 | RAO/ANO
+— RAVANI
| RAVAN

Figure 7 - PIC Reset Circuit

4. PULL-UP AND PULL-DOWN RESISTORS

Pull-up resistors are used in electronic logic circuits
to ensure that inputs to logic systems settle at
expected logic levels if external devices are
disconnected. The idea of a pull-up resistor is that it
weakly "pulls” the voltage of the wire it's connected
to towards 5V (or whatever voltage represents logic
"high™). However, the resistor is intentionally weak
(high-resistance) enough that, if something else
strongly pulls the wire toward 0V, the wire will go
to OV. Pull-down resistors operate in a similar
fashion where they are initially pulled down to logic
0 through a connection to ground, but when a source
pulls it up toward logic high it will change state. Pull
up and pull down resistors are used with switches
and push buttons to fix the state of the pin connected
to the switch at a predetermined state and not be kept
floating. Pull up and pull down resistors take a
minimum value of 4.7kQ.

5. LIGHT EMITTING DIODES

Light emitting diodes or LEDs are semiconductor
light sources used as indicator lamps in many
electronic devices. Modern versions are available
across the visible, ultraviolet and infrared
wavelengths, with very high brightness and come in
a variety of shapes and sizes. The physics behind
LED operation is covered in the Electronics I course
and will not be offered here. Figure 8 shows the
different color spectrum of LEDs.

Figure 8 - Different Colors of LEDs

In order to switch a LED on, forward current must
pass from the anode to the cathode, but how to
determine which pin of the LED is anode and which
is cathode, generally, there are two ways:

1. The longer lead is anode, the shorter is
cathode.

2. The cathode has a flat surface as shown in
Figure 9

Anode ﬂ Cathode

Figure 9 - Determining Cathode and Anode in LED

Resistors with values in between 220Q to 1kQ are
placed in between the voltage source (often 5 to 9V
or even more) and the anode to limit the current
entering the LED or else it will burn. The lesser the
resistor value, the brighter the LED shines (Ohms
Law). In this case these resistors are called current
limiting resistors.

Figure 10 shows how to interface a LED to the
PORTC pin 1

"u"glﬂ

R1
LED

|
RC1 4

Figure 10 - LED Interfacing

Not only are LEDs used as discrete components but
are also the building blocks of LED Matrices and 7-
Segment displays. Figure 11 shows an example of a
LED matrix.

Figure 11 - LED Matrix

6. SEVEN-SEGMENT DISPLAYS

A Seven-Segment display, as its name implies, is
composed of seven segments (or technically of
seven LEDs) which can be individually switched on
or off. This ability to individually control each
segment and the layout in which these segments are
distributed allows for the representation of the
numerals and some characters. If the anode ends of
all LEDs are connected together, it is called common
anode display. If the cathodes of all LEDs are
connected together, it is called a common cathode
display. To switch a LED on in a common cathode
configuration, you have to send logic high to the
segment pin. Conversely, to switch a LED on in a
common anode configuration, you have to send logic
low to the segment pin.

Figure 12 - A Single Unit 7-Segment Display

Seven-Segment displays can be purchased in single
units encompassing one, two, three or even four
displays in the same package. Digit Multiplexing
techniques are widely used to allow for the multiple
displays to share the same segment pins
simultaneously while each displaying a different
numeral or character. Figure 12 shows a typical
single unit seven segment display while Figure 13
shows the typical layout of segment pins for the
common cathode and common anode configurations.

Figure 13 - Seven-Segment Display
*Means Vcc for common Anode, and GND
for common Cathode

Interfacing a Seven-Segment display is independent
of the type of the module, whether it is common
anode or common cathode, only the logic level sent
to the display differs. Finally, since the display is
basically LEDs, current limiting resistors are used
for each segment.

7. SWITCHES AND PUSH BUTTONS

Switches and pushbuttons have similar operation, to
switch the input level between two alternating levels,
the only difference is that a push buttons only retains

the level as long as it is pressed and reverts back to
its prior state once the press effect is gone.

7.1. Switches

A switch is an electrical component which can break
an electrical circuit, interrupting the current or
diverting it from one conductor to another. There are
four types of switches:

e SPST Single Pole, Single Throw: SPST is
simple on-off switch. This type is simply
used for turning something on and off

e SPDT Single pole, double throw: SPDT
switches are useful if you want to supply
some instrument with two different voltages
or divert current between two different
paths.

e DPST Double pole, single throw: A Double-
pole Single-throw switch is simply two
SPST switches together. It allows you to
switch two separate circuits on and off at
once.

e DPDT Double pole, double throw: DPDT
switches have six terminals and allow one to
switch poles between two different circuits.

Figure 14 below shows typical SPDT switch.

Figure 14 - SPDT Switches

Switches use pull-up or pull down resistors to hold
the input voltage supplied to the PIC at a
predetermined level, only when the switch is used
does the voltage level change. Figure 15 shows the
circuit diagram of interfacing an SPST switch to
PIC. Note that the pull up or pull down resistors take
a minimum of 4.7kQ, you can determine the exact
value using Ohm’s Law.

w]
RBOJNT 33 . . .
nmi;‘;---- :
oA 38 RESISTOR ©
RWPM? B
RB4 — AT
38
CVREF RES
RBBIPGE [
T Rre7PGD L
'JT
RCOMOsQMICK [

15
Rl::lmusucm%
HC!.’CCF'IT
roasckseL 18 L
RC4/SDISDA
25
26

RCHED0O
RCHMHCK
RIEFARYEMT

Figure 15 - Interfacing an SPST Switch — Same circuit
is used to interface a push button.

7.2. Push Buttons
There are two types of push buttons:

e Normally closed push button (abbreviated
NC) is one that normally gives logic one and
when pressed gives logic zero.

e Normally open push button (abbreviated
NO) is one that normally gives logic zero
and when pressed gives logic one.

Push buttons are interfaced in the exact same way as
an SPST switch shown in Figure 15. Figure 16
shows a push button.

.

Figure 16 - A Push Button

7.3. Mechanical Switch De-bouncing

Push-buttons and switches are often used to provide
input to digital systems. However, mechanical
switches do not open or close cleanly. When a
switch is pressed it makes and breaks contacts
several times before settling into its final position.
This causes several transitions or "bounces" to
occur. To correct this situation a de-bounce circuit
is connected to the switches, thus removing the

series of pulses generated by the mechanical action
of the switch. Figure 17 shows a circuit which
suffers from bouncing effects.

Vout

Figure 17 - A Circuit Suffering from Mechanical
Bouncing Problem

Figure 18 shows an oscilloscope captured image
clearly showing the bouncing effect.

Tek S @ Stop M Pos: 13,6008 TRIGGER
+

Type

Source
CH1

Slope
Flising|

1+
| Mode

Coupling
CH1 & 212%
<10Hz

CH1 .00 M 50.0us

Figure 18 - Bouncing Effect. Note that it
approximately lasts for 150 us

Solutions
There are two solutions to the bouncing problem:
hardware and software approaches.

Hardware de-bouncing: The most basic circuit
used to de-bounce a switch is shown in Figure 19. It
consists of a resistor and a capacitor in series. The
resistor and capacitor values must be chosen such
that the RC time constant is greater than the bounce
time. The output is then connected to a Schmitt
trigger. At the start of operation the capacitor is
charged to Vcc and the output is at 5 volts, when the
switch is closed, the capacitor starts discharging

smoothly and this filters out the bounces. The
Schmitt trigger is a comparator which gives a high
output if the input value is over a certain threshold,
and a low output if below. In this case, the Schmitt
trigger is necessary because the smoothed out value
from the capacitor is neither high nor low but an
exponential signal which digital devices don’t
understand, therefore it is up to the Schmitt trigger
to convert it to logic highs and lows.

VCC

R Schmitt Trigger

Figure 19 - A Hardware De-Bouncing Solution

Software de-bouncing: The basic idea is to read the
switch input signal after some time interval
guaranteed to be larger than the duration which the
bouncing lasts and thus skip any short-lived
bounces. In. Figure 18, one can read the signal after
200 pis.

Which is better: Software or Hardware de-
bouncing?

It depends on your application needs; if time is
critical and speed is important, you need not waste
cycles in generating delays and therefore hardware
solutions are preferable. If, however, you are
developing a simple small-scale project where you
want to reduce the hardware costs, then the software
approach is better. All in all, you need to
compromise and choose depending on your
application and development needs

Introduction to Proteus
Prepeared by Eng.Enas Jaara

The PROTEUS Environment:

Proteus PIC Bundle is the complete solution for developing, testing and virtually prototyping your
embedded system designs based around the Microchip Technologies ™ series of microcontroller. This
software allows you to perform schematic capture and to simulate the circuits you design.

A demonstration on the use of PROTEUS will be given to you on this lab session, after that; you are
encouraged to learn to use the software interactively.

55 UNTITLED - ISIS Professional Q@@

Fo oo G OnED oA ShRl SRbE 2oad i) Dinto S e
D@ @@ & 80 Bz ¢+ $QQQL3
=) | IS P =2 AZ BRRSN BB OE

e

o Ll

g
OVGI’VIeW :|>_
Window X N

= N

@ | N\ || R T T T R

Y A A - i LA A

I 3 I » I I I .\I [] No Messages

] Root sheet 1 \ \
Animation panel Object Selector Editing Window Status bar

Figure 1. A screen shot of the Proteus IDE

Proteus How to Start
Drawing the Circuit

Start a fresh design, select New Design
from File menu then the Create New 38 View Edit Tools Design Graph Source Debug Library Templat

Design dialogue now appears as shown | [2RI

in Figure 2 and 3. Select Default and | = Cpen Design... Crl+0 oo eooe

press OK. Save Design crl+s 0

iis UNTITLED - ISIS Professional

Save Design As... he e

Save Design As Template... .

Windows Explorer... fe e

Figure 2

5= Create Mew Design

Select a template to act az the default far the new design:

DEFAULT Landszape A0 Landszcape &1 Landscape 42 Landzcape 43 Landzcape 44
Landscape US Landzcape S Landscape US Portrait A0 Fartrait 41 Fortrait &2

& B C

Fuortrait 43 Portrait &4 Portrait 1S A Portrait US B Portrait US C

C:APragram FilessLabzenter ElectroniczhPrateus ¥ PrafessionalhTEMPLATESANDEFAULT.DTF

Ok Cancel

Figure 3

From the Library menu select Pick Device/Symbol see Figure 4 or Left click on the letter ‘P’ above the
Object Selector as shown in Figure 5 to launch the Library Browser or Press the 'P' button on the

keyboard. The Library Browser will now appear over the Editing Window see Figure 6.

i5i5 UNTITLED - ISIS Professional
File Wiew Edit Tools Design Graph Source Debug BEEEM Template System Help

.DIE?F’ SN [8

= Ll I e o Library.

FIN oevices | R B !
b7 N I . Autoplace Library...
o CLLLLliiiiiiioid Verify Packaging...
= P
=

--------------- i Library Manager

L L P ————
i IIIlIIliniiIIiIiiiiiniiiiiiiininii
x| il

i5is INTITLED - ISIS Professional

PLl

oy =

\IJ"

g

5= Pick Devices

Sub-category:

Manufacturer.

Kepwords: Besults [117: PICTEFE774 Preview:
|pic:1 Bfa7 Device | Library Description WS DLL Madel [FICT6]
FICIEFE7 PICMICRO PICTE Microcantoller (71688 code, 3656 data, 2568 EPROM, Ports A
FICIEFE70 PICMICRO PIC1E Microcontroller [2kB code, 1288 data, B4B EPROM, Ports A-C, 1: 1'-3_— Tumiann Fman
PIC16FE71 PICMICRO PIC1E Microcontroller [2kE code, 1288 data, G4B EPROM, Parts A-E, 1: | =
| PIC1E6FE73 PICMICRO PIC1E Microcontioller (4kB code, 1928 data, 1288 EPROM, Ports 4-C. 0 | 3] Gane -
Microprosgssor ICs PICIEFB734 PICMICRO FIC1E Microcontioller [4kE code, 1928 data, 1288 EPROM. Ports AC.: | 2| Sahamsi ™ mare
PIC1EF374 PICMICRO PICIE Microcontioller [4kB code, 1928 data, 1258 EPROM, Ports AF, | | Sjmrmuzowr — mneee
PICTEFG744 PICMICRO PICT6 Micracontroller [4kB code, 1928 data, 1288 EPROM, Ports A-E,; | 5 | 7 manasairmy
PIC1E6FE7E PICMICRO PIC1E Microcontroller (BkB code, 3688 data, 2568 EPROM, Ports A-C. 0 | 2] muwave e
PIC1EFS764 PICMICRO PIC1E Microcontroller [SkE code, 3688 data, 2568 EPROM, Pats 4-C. 0 |~ =™ T
PIC1EFS77 PICMICRO PIC1E Microcontraller (BkB code, 3688 data, 2568 EPROM, Ports AE, 0 | — " i
0 FIC EPR R
Je—
iy

[elsld<[ulslds

Tolale 4l

(dulel o1

PCE Preview:

[~

2l | oK | | LCancel |

Figure 6 Library Browser

Type "PIC16F877A " in the Key words field and double click on the result to place
the PIC16F877A into the Object Selector.

Type ' PIC16F877A ' in the Key words field and double click on the result to place the PIC16F877A in to
the Object Selector. Do the same for the LEDs, Buttons, Crystal oscillator, capacitors, 7 SEG-COM-

Cathode, Resistors.

Once you have selected all components into the design close the Library Browser and left click once on
any component in the Object Selector
(This should highlight your selection and a preview of the component will appear in the Overview

Window at the top right of the screen see Figure 7). Now left click on the Editing Window to place the

component on the schematic - repeat the process to all components on the schematic.

isis UNTITLED -

1515 Professional

O

"}

=

S @@

File WView Edit Tools Design Graph Source Debug Library Template Sy

= P RQLELT

op 2 F

=™
=1#

\

When you click left on any
component in the Object
Selector, a preview of the
component will appear in
the Overview Window

In order to place ground
or 5 voltage right click on

the Editing Window
, select place then
terminal then select

ground (0 V) or power
(5V).

Connect the components
to obtain the circuit you
need.

Figure 8

PICTEF87 74

DEVICES

Preview of the

DEFALLT
INPLIT
OuUTPLT
BIDIR
POWER

component
s Place 3 4 Component J
SN Junction Dat
----- Select all Obhjects __+__
L === Text Script
SRR brkr Bus
S TF sub-Circuit
C I Device Pin 4
© - ||« 1 Rootsheet1 {2 Graphe 3
iiiiiiiiiiiiiiiiiiiiiii: | TapeRecorder
LIl Generator r

up?"l Voltage Probe
Iﬁﬂ Current Probe
& virtual Instrument r

iy Arc

A Text
B symbal r
- Marker »

GROUND

BUS

@ From Libraries

Attaching the HEX File
The next stage is to attach the HEX file to our design in order to successfully simulate the design. We do
this through the following steps.

It is necessary to specify which file the processor is to run. In our example this will be
filename.hex (the hex file produced from MPASM subsequent to assembling filename.asm).

To attach this file to the processor, right click on the schematic part for the PIC and then left click on the
part. This will bring up the Edit Component dialogue form which contains a field for Program File. If it is
not already specified as filename.hex either enter the path to the file manually or browse to the location
of the file via the = button to the right of the field. Once you have specified the hex file to be run press
ok to exit the dialogpe form.

We have now attached the source file to the design .

isis Edit Component

Component Beferdnce: |L|1 Hidden:
Component ¥ alue: ||:'|':1 BFE77A Hidder:
PCE Package: |DIL40 ~|| 7 [Hidear +] | Data |
Fmeer Bl \Embadded'ProteusiLab4d HEX o [Hide &l |
Proceszzor Clock Freguency: |1 MHz | Hide All ﬂ

Program Configuration Word: |DH3FFB | Hide &ll ﬂ

Advanced Properties:

R andomize Program Memany? ﬂ |Nu ﬂ |Hi|:|e All ﬂ
Qther Properties:
A
L
Exclude from Simulation Attach hierarchy module

Exclude from PCE Layout
Edit all properties as text

Figure 9

Debugging the Program (Simulating the Circuit)

In order to simulate the circuit point the mouse over the Play Button on the animation panel at the
bottom right of the screen see Figure 10 and click left. The status bar should appear with the time that the
animation has been active for.

o

"[BB Iab3 - ISIS Professional (Animating)

File View Edit Tools Design Graph Source Debug Library Template System Help

DEW d&G 6 ||BE +| +QQaR[[e Xha TZHE &% |2 4% BaNY EE|D

—=

R10 R1i2 =
m F-]

#+1/90Q

FSEG-COM-ANODE
?SEG-COM-CATHODE
BUTTON

CAR

CRYSTAL
LED-GREEM

LED-RED
LOGICSTATE

PICTEFE77a
PULLUF
RES
SWITCH

>80 @ENHYY® HE &+

—

P [[1 [m [[@ 7Messapels) | |[ANIMATING: 00:03:23.650000 (CPL load 2%) |1

Figure 10: The Filling Machine Circuit

