

1

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
The main objectives of this experiment are to familiarize you with:

 Microchip MPLAB Integrated Development Environment (IDE) and the whole process of building a

project, writing simple codes, and compiling the project.

 Code simulation

 QL200 development kit

 QL-PROG software and learn how to program the PIC using it

Experiment 0: Introduction to MPLAB

and QL200 development kit

2

Starting MPLAB

After installation, shortcut of this software will appear on desktop.

Create asm file using MPLAB

a) Double click on the “MPLAB” program icon found on the desktop.

Note: All programs written, simulated and debugged in MPLAB should be stored in files with .asm

extension.

b) To create asm, follow these simple

steps:

i. File  New

ii. File  Save as, in the save

dialog box; name the file as

“myFirstFile.asm” WITHOUT

THE DOUBLE QUATATIONS

MARKS, this will instruct

MPLAB to save the file in .asm

format.

NOTE: All your files should be stored in a short path:

The total number of characters in a path should not exceed 64 Char No.

C:\ or D:\ or … 3 

D:\Embedded\ 12 

D:\Embedded\Lab 15 

D:\Engineer\Year_Three\Summer_Semester\Embedded_Lab\Experiment_1\MyProgram.asm 78 

Any file on Desktop 

3

Create a project in MPLAB by following these simple steps:

1. Select the Project  Project Wizard menu item  Next

2. In the device selection menu, choose 16F84A (or your target PIC)  Next

4

3. In the Active Toolsuite, choose Microchip MPASM Toolsuite  Click next.

DO NOT CHANGE ANYTHING IN THIS SCREEN

4. Browse to the directory where you saved your ASM file. Give your project a name  Save  Next.

5

5. If, in Step 4, you navigated correctly to your file destination you should see it in the left pane

otherwise choose back and browse to the correct path. When done Click add your file to the project

(here: myFirstFile.asm). Make sure that the letter A is beside your file and not any other letter 

Click next Click Finish.

6. You should see your ASM file under Source file, now you are ready to begin

Double click on the myFirstFile.asm file in the project file tree to open. This is where you will write

your programs, debug and simulate them.

 CORRECT WRONG

6

Now we will simulate a program in MPLAB and check the results

In MPLAB write the following program:

Movlw 5 ; move the constant 5 to the working register

Movwf 01 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf 0B ; copy the value 2 from working register to INTCON (address 0B)

Movf 01, 0 ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write for now

End ; every program must have an END statement

After writing the above instructions we should build the project, do so by pressing build

An output window should

show:

BUILD SUCCEDDED

Click Absolute

7

QL-PROG – How to Program
Prepared by Eng. Enas Jaara

After installation, shortcut of this software will appear on desktop.

1. Connect hardware and power up the kit, run the programming software QL-PROG (Double
click it to run the software) which will automatically search programmer hardware. It will
appear as shown in the below diagram

2. Select Chip Family and Chip model
 Choose All Chip from the chip family and choose 16F877A from the chip select

3. Press Erase button on programming software panel to Erase the chip data

4. Load File to Program
 Press “Load” button on programming software panel to load machine code file (HEX file) of the
chip you desire to program. load the LCD1.hex found on D:\Experiment0

8

5. Set Configuration Bit
You may set or change the configuration bit of chip by running pressing “Fuses” button on
software panel. After running the command software, pop-up window to set configuration bit will
appear as shown in below diagram. Set the options according to your requirement and click “OK”
button.

If any of the above option differs, it is because you have chosen the wrong PIC, so go to chip select
and choose your appropriate PIC.
6. Program the PIC
Press "Program" button to begin programming. After completion, there will be messages of
"Programming complete".

1

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives

The main objectives of this experiment are to familiarize you with:

 The MOV instructions

 Writing simple codes, compiling the project and Code simulation

 The concept of bank switching

 The MPASM directives

 Microcontroller Flags

 Arithmetic and logical operations

Pre-lab requirements

Before starting this experiment, you should have already acquired the MPLAB software and the related

PIC datasheets. You are required to install the MPLAB version that is available in the Lab.

1

Experiment 1: MPLAB and Instruction

Set Analysis 1

2

Movement Instructions

You should know by now that most PIC instructions (logical and arithmetic) work through the Working

Register W; that is one of their operands must always be the Working Register W, while the other operand

might be either a constant or a memory location. Many operations store their result in the working register;

therefore, we usually need the following movement operations to perform arithmetic and logic instructions

between two values:

1. Moving constants to the working register (Loading)

2. Moving values from the data memory to the working register (Loading)

3. Moving values from the working register to the data memory (Storing)

NOTE: INSTRUCTIONS IN MPLAB ARE CASE INSENSITIVE; YOU CAN WRITE IN EITHER

SMALL OR CAPITAL LETTERS

 MOVLW: moves a literal (constant) to the working register (final destination). The constant is

specified by the instruction. You can directly load constants as decimal, binary, hexadecimal, octal

and ASCII. The following examples illustrate:

NOTE: The DEFAULT BASE in MPLAB IS HEXADECIMAL

Examples:

1. MOVLW 05 : moves the constant 5 to the working register

2. MOVLW 10 : moves the constant 16 to the working register.

3. MOVLW 0xAB : moves the constant ABh to the working register

4. MOVLW H’7F’ : moves the constant 7Fh to the working register

5. MOVLW CD : WRONG, if a hexadecimal number starts with a character, you

 should write it as 0CD or 0xCD or H’CD’

6. MOVLW d’10’ : moves the decimal value 10 to the working register.

7. MOVLW .10 : moves the decimal value 10 to the working register.

8. MOVLW b ’10011110’ : moves the binary value 10011110 to the working register.

9. MOVLW O ’76’ : moves the octal value 76 to the working register.

10. MOVLW A’g’ : moves the ASCII value g to the working register.

 MOVWF: copies the value found in the working register into the data memory, but to which

location? The location is specified along with the instruction and according to the memory map.

So what is the memory map?

A memory map shows all available registers (in data memory) of a certain PIC along with their

addresses, it is organized as a table format and has two parts (as shown in the figure below):

1. Upper part: which lists all the Special Function Registers (SFR) in a PIC, these registers

normally have specific functions and are used to control the PIC operation

2. Lower part: which shows the General Purpose Registers (GPR) in a PIC; GPRs are data

memory locations that the user is free to use as he wishes.

Remember! Memory Maps of different PICs are different. Refer to the datasheets for the

appropriate data map

3

Examples:

1. MOVWF 01  COPIES the value found in W to TMR0

2. MOVWF 05 COPIES the value found in W to PORTA

3. MOVWF 0C  COPIES the value found in W to a GPR (location 0C)

4. MOVWF 32  COPIES the value found in W to a GPR (location 32)

5. MOVWF 52  WRONG, out of data memory range of the PIC 16F84a (GPR range is from 0C-4F

and 8C to CF)

 MOVF: COPIES a value found in the data memory to the working register OR to itself. Therefore,

we expect a second operand to specify whether the destination is the working register or the

register itself. For now: a 0 means the W, a 1 means the register itself.

Examples:

1. MOVF 05, 0 : copies the content of PORTA to the working register

2. MOVF 2D, 0 : copies the content of the GPR 2D the working register

3. MOVF 05, 1 : copies the content of PORTA to itself

4. MOVF 2D, 1 : copies the content of the GPR 2D to itself

4

Writing and Compiling Programs

Now, let’s try to use MPLAB to write a compile a simple program. In MPLAB write the following

program.

Movlw 5 ; move the constant 5 to the working register

Movwf 01 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf 0B ; copy the value 2 from working register to INTCON (address 0B)

Movf 01, 0 ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write for now

End ; every program must have an END statement

After writing the above instructions we should build the project, do so by pressing Build button.

An output window should show: BUILD SUCCEDDED

Notes on building programs:

 Build succeeded does not mean that the logic of your program is correct. It means that there are

no SYNTAX errors.

 The warnings that you see do not affect the execution of the program but they are worth

reading. This warning reads: “Found opcode in column 1”, column 1 is reserved for labels;

however, we have written instructions (opcode) instead thus the warning. To solve this

warning, simply type few blank spaces before each instruction.

5

Preparing for Simulation

1. Go to View Menu  Watch

2. From the drop out menu choose the registers we want to watch during simulation and click ADD

SFR for each one. Add the following registers: WREG, TMR0 and INTCON. You should have the

following:

3. Notice that the default format is in hexadecimal, to change it (if you need to) simply right-click on

the row  Properties and choose the new format you wish.

6

4. From the Debugger Menu  choose Select Tool  then MPLAB SIM

Now new buttons will appear in the toolbar as shown below.

5. To begin the simulation, we will start by resetting the PIC; do so by pressing the yellow reset

button. A green arrow will appear next to the first instruction. The green arrow means that the
program counter is pointing to this instruction which has not been executed yet.

Notice the status bar below. Keep an eye on the value of the program counter (pc: initially 0),
see how it changes as we simulate the program:

6. Press the “Step Into” button one at a time and check the Watch window each time an instruction
executes. Keep pressing “Step Into” until you reach the NOP instruction then STOP. Compare the
results as seen in the Watch window with those expected.

7

Directives

Directives are not instructions. They are assembler commands that appear in the source code but are

not usually translated directly into opcodes. They are used to control the assembler: its input, output,

and data allocation. They are not converted to machine code (.hex file) and therefore not downloaded to

the PIC.

 The “END” directive

If you refer to the Appendix at the end of this experiment, you will notice that there is no end
instruction among the PIC 16 series instructions, so what is “END”?

The “END” directive is a command which tells the MPLAB IDE that we have finished our program. It has
nothing to do with neither the actual program nor the PIC.

The END should always be the last statement in your program! Anything which is written after the end
command will not be executed and any variable names will be undefined.

 The “EQU” Directive

As you have just noticed, it is difficult to write, read, debug or understand programs while dealing with
memory addresses as numbers. Therefore, we will learn to use new directives to facilitate program
reading.

The equate directive is used to assign labels to numeric values. They are used to DEFINE CONSTANTS or
to ASSIGN NAMES TO MEMORY ADDRESSES OR INDIVIDUAL BITS IN A REGISTER and then use the name
instead of the numeric address.

Timer0 equ 01
Intcon equ 0B
Workrg equ 0
Movlw 5 ; move the constant 5 to the working register

Movwf Timer0 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf Intcon ; copy the value 2 from working register to INTCON (address 0B)

Movf Timer0, Workrg ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write it for

now

End

Notice how it is easier now to read and understand the program, you can directly know the actions

executed by the program without referring back to the memory map by simply giving each address a

name at the beginning of your program.

NOTE: DIRECTIVES THEMSELVES ARE NOT CASE-SENSITIVE BUT THE LABELS YOU DEFINE ARE. SO YOU

MUST USE THE NAME AS YOU HAVE DEFINED IT SINCE IT IS CASE-SENSITIVE.

As you have already seen, the GPRs in a memory map (lower part) do not have names as the SFRs
(Upper part), so it would be difficult to use their addresses each time we want to use them. Here, the
“equate” statement proves helpful.

Num1 equ 20 ;GPR @ location 20
Num2 equ 40 ;GPR @ location 40
Workrg equ 0

8

Movlw 5 ; move the constant 5 to the working register

Movwf Num1 ; copy the value 5 from working register to Num1 (address 20)

Movlw 2 ; move the constant 2 to the working register

Movwf Num2 ; copy the value 2 from working register to Num2 (address 40)

Movf Num1, Workrg ; copy back the value 5 from Num1 to working register

Nop ; this instruction does nothing, but it is important to write it for

now

End

When simulating the above code, you need to add Num1, Num2 to the watch window, however, since
Num1 and Num2 are not SFRs but GPRs, you will not find them in the drop out menu of the “Add SFR”,
instead you will find them in the drop out menu of the “Add symbol”.

 The “INCLUDE” Directive

Suppose we are to write a huge program that uses all registers. It will be a tiresome task to define all
Special Function Registers (SFR) and bit names using “equate” statements. Therefore, we use the
include directive. The Include directive calls a file which has all the equate statements defined for you
and ready to use, its syntax is

#include “PXXXXXXX.inc” where XXXXXX is the PIC part number

Older version of include without #, still supported.

Example: #include “P16F84A.inc”

The only condition when using the include directive is to use the names of registers as Microchip

defined them which are ALL CAPITAL LETTERS and AS WRITTEN IN THE DATA SHEET. If you don’t

do so, the MPLAB will tell you that the variable is undefined!

#include “P16F84A.inc”

Movlw 5 ; move the constant 5 to the working register

Movwf TMR0 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf INTCON ; copy the value 2 from working register to INTCON (address 0B)

Movf TMR0, W ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write it for

now

End

9

 The “Cblock” directive

You have learnt that you can assign GPR locations names using the equate statements to facilitate

dealing with them. Though this is correct, it is not recommended by Microchip as a good programming

practice. Instead you are instructed to use cblocks when defining and declaring GPRs. So then, what is

the use of the “equ” directive?

From now on, follow these two simple programming rules:

1. The “EQU” directive is used to define constants

2. The “cblock” is used to define variables in the data memory.

The cblock defines variables in sequential locations, see the following declaration

Cblock 0x35

 VarX

VarY

VarZ

endc

Here, VarX has the starting address of the cblock, which is 0x35, VarY has the sequential address 0x36

and VarZ the address of 0x37

What if I want to define variable at locations which are not sequential, that is some addresses are at

0x25 others at 0x40? Simply use another cblock statement, you can add as many cblock statements as

you need

 The Origin “org” directive

The origin directive is used to place the instruction which exactly comes after it at the location it
specifies.

Examples:

Org 0x00

Movlw 05 ; This instruction has address 0 in program memory

Addwf TMR0 ; This instruction has address 1 in program memory

Org 0x04 ; Program memory locations 2 and 3 are empty, skip to address 4 where it

contains

Addlw 08 ; this instruction

Org 0x13 ; WRONG, org only takes even addresses

In This Course, Never Use Any Origin Directives Except For Org 0x00 And 0x04, Changing

Instructions’ Locations In The Program Memory Can Lead To Numerous Errors.

The Concept of Bank Switching

Write, build and simulate the following program in your MPLAB editor. This program is very similar to

the ones discussed above but with a change of memory locations.

10

#include “P16F84A.inc”

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)

Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)

Movf TRISA, W ; copy back the value 5 from TRISA to working register

Nop ; this instruction does nothing, but it is important to write it for

now

End

After simulation, you will notice that both TRISA and OPTION_REG were not filled with the values 5 and
2 respectively! But why?

Notice that the memory map is divided into two columns, each column is called a bank, here we have
two banks: bank 0 and bank 1. In order to access bank 1, we have to switch to that bank first and same
for bank 0. But how do we make the switch?

Look at the details of the STATUS register in the figure below, there are two bits RP0 and RP1, these bits
control which bank we are in:

 If RP0 is 0 then we are in bank 0
 If RP0 is 1 then we are in bank 1

We can change RP0 by using the bcf/bsf instructions

 BCF STATUS, RP0 RP0 in STATUS is 0  switch to bank 0
 BSF STATUS, RP0 RP0 in STATUS is 1  switch to bank 1

BCF: Bit Clear File Register (makes a specified bit in a specified file register a 0)

BSF: Bit Set File Register (makes a specified bit in a specified file register a 1)

Try the program again with the following changes and check the results.

#include “P16F84A.inc”

BSF STATUS, RP0

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)

Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)

Movf TRISA, W ; copy back the value 5 from TRISA to working register

BCF STATUS, RP0

Nop ; this instruction does nothing, but it is important to write it for

now

End

The “Banksel” directive

When using medium-range and high-end microcontrollers, it will be a hard task to check the memory
map for each register we will use. Therefore, the BANKSEL directive is used instead to simplify this
issue. This directive is a command to the assembler and linker to generate bank selecting code to set the
bank to the bank containing the designated label

11

Example:

BANKSEL TRISA will be replaced by the assembler, which will automatically know which bank the
register is in and generate the appropriate bank selection instructions:

Bsf STATUS, RP0
Bcf STATUS, RP1

In the PIC16F877A, there are four banks; therefore, you need two bits to make the switch between any
of them. An additional bit in the STATUS register is RP1, which is used to make the change between the
additional two banks.

One drawback of using BANKSEL is that it always generates two instructions even when the switch is
between bank0 and bank1 which only requires changing RP0. We could write the code above in the
same manner using Banksel.

#include “P16F84A.inc”
Banksel TRISA
Movlw 5 ; move the constant 5 to the working register
Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register
Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)
Movf TRISA, W ; copy back the value 5 from TRISA to working register
Banksel PORTA
Nop ; this instruction does nothing, but it is important to write it for now

End

Check the program memory window to see how BANKSEL is replaced in the above code and the

difference in between the two codes in this page.

The Flags

The PIC 16 series has three indicator flags found in the STATUS register; they are the C, DC, and Z flags.

See the description below. Not all instructions affect the flags; some instructions affect some of the flags

while others affect all the flags. Refer to the Appendix at the end of this experiment and review which

instructions affect which flags.

The MOVLW and MOVWF do not affect any of the flags while the MOVF instruction affects the zero flag.

Copying the register to itself does make sense now because if the file has the value of zero the zero flag

will be one. Therefore, the MOVF instruction is used to affect the zero flag and consequently know if a

register has the value of 0. (Suppose you are having a down counter and want to check if the result is

zero or not)

12

Arithmetic and Logic Instructions

The PIC16 series logical and arithmetic instructions are easy to understand by just reading the

instruction, for from the name you readily know what this instruction does. There are the ADD, SUB,

AND, XOR, IOR (the ordinary Inclusive OR). They only differ by their operands and the result

destination. The following table illustrates that.

 Type I – Literal Type Type II – File Register Type

Syntax xxxLW k

where k is constant

xxxWF f, d

where f is file register and

d is the destination (F, W)

Instructions Addlw, sublw, andlw, iorlw and

xorlw

Addwf, subwf, andwf, iorwf, xorwf

Operands 1. A literal (given by the

instruction)

2. The working register

1. A file register in the data memory

(either SFR or GPR)

2. The working register

Result destination The working register only Two Options:

1. W: the Working register

2. F: The same File given in the

instruction

How does it work? W = L operation W

F = F operation W

The value of F is overwritten by the

result, original value lost

W = F operation W

The value of F is the original value,

result stored in working register.

The order is important in the subtract operation

Examples

(assuming you are

using the include

xorlw 0BB

W = W ^ 0BB

Andwf TMR0, W

W = TMR0 & W

13

statement and

appropriate equ

statements for

defining GPRs)

sublw .85

W = 85d – W

addwf NUM1, F

NUM1 = NUM1 + W

Subwf PORTA, F

PORTA = PORTA - W

Notice that in subtraction, the W has the minus sign

Many other instructions of the PIC16 series instruction set are of Type II; refer back to the Appendix at

the end of this experiment for study.

Starting with Basic Programs

Program One: Fibonacci Series Generator

In mathematics, the Fibonacci numbers are the following sequence of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

The first two Fibonacci numbers are 0 and 1, and each remaining number is the sum of the previous two

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

include "p16f84a.inc"

Fib0 equ 20 ;At the end of the program the Fibonacci series numbers from 0 to 5 will

Fib1 equ 21 ;be stored in Fib0:Fib5

Fib2 equ 22

Fib3 equ 23

Fib4 equ 24

Fib5 equ 25

Clrw ;This instruction clears the working register, W = 0

clrf Fib0 ;The clrf instruction clears a file register specified, here Fib0 = 0

movf Fib0, w ;initializing Fib1 to the value 1 by adding 1 to Fib0 and storing it in Fib1

addlw 1

movwf Fib1

movf Fib0, W ; Fib2 = Fib1 + Fib0

addwf Fib1, W

movwf Fib2

movf Fib1, W ; Fib3 = Fib2 + Fib1

addwf Fib2, W

movwf Fib3

movf Fib2, W ; Fib4 = Fib3 + Fib2

addwf Fib3, W

movwf Fib4

movf Fib3, W ; Fib5 = Fib4 + Fib3

addwf Fib4, W

movwf Fib5

nop

end

14

1. Start a new MPLAB session, add the file example1.asm to your project

2. Build the project

3. Select Debugger  Select Tool MPLAB SIM

4. Add the necessary variables and the working register to the watch window (remember that

user defined variables are found under the “Add Symbol” list)

5. Simulate the program step by step, analyze and study the function of each instruction. Stop at

the “nop” instruction

6. Study the comments and compare them to the results at each stage and after executing the

instructions

7. As you simulate your code, keep an eye on the MPLAB status bar below (the results shown in

this status bar are not related to the program, they are for demo purposes only). The status bar

below allows you to instantly check the value of the flags after each instruction is executed.

In the figure above, the flags are z, DC, C

 A capital letter means that the value of the flag is one; meanwhile a small letter means a value

of zero. In this case, the result is not zero; however, digit carry and a carry are present.

Run and Breakpoints

Many times you will need to make some changes to your code, additions, omissions and bug fixes. It is

not then flexible to step into your code step by step to observe the changes you have made especially

when your program is large. It would be a good idea to execute your code all at once or up to a certain

point and then read the results from the watch window.

Now suppose we want to execute the Fibonacci series code at once - to do so, follows these steps:

1. Double click on the “nop” instruction (line 30), a red circle with a letter “B” inside is shown to

the left of the instruction. This is called a breakpoint. Breakpoints instruct the simulator to stop

code execution at this point. All instructions before the breakpoint are only executed

2a. Now press the run button

2b. Alternatively, you can instruct the IDE to automatically step into the code an instruction at a

time by simply pressing “animate”.

You can control the speed of simulation as follows:

1. Debugger  Settings  Animation/ Real time Updates

2. Drag the slider to set the speed of simulation you find convenient

15

Program Memory Space Usage

Though we have written about 31 lines in the editor, the total number of program memory space

occupied is far less! Remember that directives are not instructions and that they are not downloaded to

the target microcontroller. To get an approximate idea of how much space does the program occupy:

Select View  Program Memory  Symbolic tab

Note that the last instruction

written is “nop” (end is a

directive). The total space

occupied is only 18 memory

locations

The “opcode” field shows the

actual machine code of each

instruction which is downloaded

to the PIC

16

Program Two: Implementing the function Result = (X + Y) Z

This example is quite an easy one, initially the variable X, Y, Z are loaded with the values which make

the truth table

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

include "p16F84A.inc"

cblock 0x25

 VarX

 VarY

 VarZ

 Result

endc

 org 0x00

Main ;loading the truth table

 movlw B'01010101' ;ZYX Result

 movwf VarX ;000 0 (bit7_VarZ, bit7_VarY, bit7_VarX)

 movlw B'00110011' ;001 1 (bit6_VarZ, bit6_VarY, bit6_VarX)

 movwf VarY ;010 1 .

 movlw B'00001111' ;011 1 .

 movwf VarZ ;100 1 .

 ;101 0 .

 ;110 0 .

 ;111 0 (bit0_VarZ, bit0_VarY, bit0_VarX)

 movf VarX, w

 iorwf VarY, w

 xorwf VarZ, w

 movwf Result

 nop

 end

1. Start a new MPLAB session, add the file example2.asm to your project

2. Build the project

3. Select Debugger  Select Tool MPLAB SIM

4. Add the necessary variables and the working register to the watch window (remember that

user defined variables are found under the “Add Symbol” list)

5. Simulate the program step by step, analyze and study the function of each instruction. Stop at

the “nop” instruction

6. Study the comments and compare them to the results at each stage and after executing the

instructions

17

Appendix A: Instruction Listing

18

Appendix B: MPLAB Tools

Another method to view the content of data memory is through the File Registers menu. To do

so: Select View Menu File Registers

After building the Example1.asm codes, start looking at address 20 (which in our code corresponds to

Fib0), to the right you will see the adjacent file registers from 21 to 2F.

Observe that after code execution, these memory locations are filed with Fibonacci series value as

anticipated.

1

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Name:

Student ID:

Section (Day/Time):

UNIVERSITY OF JORDAN
FACULTY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF COMPUTER ENGINEERING

Labsheet
1

MPLAB and Instruction Set Analysis 1

COMPUTER NAME:

2

EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet 1: MPLAB and Instruction Set Analysis 1

Name: Student ID:

Section:

(Pre-lab) Part 1: Starting up with instructions

Answer the following short questions:

A) Write the instruction(s) needed to load the working register with the value 9F.

B) Write the instruction(s) needed to load the register REGX with the value 6B.

C) Write the instruction(s) needed to switch to Bank 2.

D) Write the instruction(s) needed to decrement the value found in PORTC with 9.

E) Write the instruction(s) needed to complement the value found in REGA.

F) Write the instruction(s) needed to Multiply the value found in TMR0 with 8 (Hint:

rotating a number to the left multiplies it by two, use RLF instruction. Remember that the

rotation operation in PIC16 series is through the carry flag. (refer to the pic16f84A datasheet

Page38)

G) Write the instruction(s) needed to divide the value found in PORTB by 2 (Hint: rotating a

number to the right divides it by two, use RRF instruction. Remember that the rotation

operation in PIC16 series is through the carry flag.

3

(Pre-lab) Part2: Implementing logical function
1. Start a new MPLAB project, add the file example2.asm to your project.

2. Build the project.

3. Select Debugger  Select Tool MPLAB SIM. Add the variable Result and the Working

register to the watch window.

4. Simulate the program step by step. Stop at the NOP instruction.

5. What is the content of Result register after executing your code?

Result =

Part 3: Simulate a program in MPLAB and check the results

1. Create a project with the code below in your ASM file.

#include "p16F84A.inc"

Val1 equ 22

Val2 equ 33

Val3 equ 44

Val4 equ 45

 movlw 03

 movwf VAL1

 movlw 09

 movwf Val2

 addwf Val1, w

 movwf Val3

 rrf Val3,1

 movf Val3, w

 iorlw 80

 movwf Val4

 nop

2. Build the project and the output window will show you numerous messages for errors and

warnings. Double click on the error. The pointer will move you to the line that caused it.

3. In the space below, list the two errors in the program
Line Number Error Correction

4. After correcting the errors in the ASM file:

a) Select Debugger Select Tool MPLAB SIM.
b) Select View and select Watch.
c) Under the “Add Symbol” list, add the variables Val1, Val2, Val3 and Val4.
d) Under the “Add SFR” list, add the working register to the watch window.
e) Simulate the program step by step, analyze and study the function of each instruction.
f) Stop at the NOP instruction.
g) What is the content of Val3 and Val4 registers after executing your code?

Val3 =

Val4 =

4

Part 4: Writing and Simulating Programs (1)

1. Create a project with an ASM file, using the steps in the Experiment 0 file.

2. In the ASM file, define the following variables in memory at the specified address.

Variable Address

NUM1 0x20

NUM2 0x21

Result 0x22

3. In the ASM file, write a program that performs the following operation. Copy and paste your

code in the space below.

𝑹𝒆𝒔𝒖𝒍𝒕 = 𝑵𝑼𝑴𝟏+𝑵𝑼𝑴𝟐−𝑫′𝟏𝟑′

4. Test your program when NUM1 = D'16' and NUM2 = D'89'. Use the Watch window to examine

the Result variable.

5

Part 5: Writing and Simulating Programs (2)

1. Create a project with an ASM file, using the steps in the Experiment 0 file.

2. In the ASM file, define the following variables in memory at the specified address.

Variable Address

NUM1 0x30

NUM2 0x31

Result 0x32

3. In the ASM file, write a program that performs the following operation. Copy and paste your

code in the space below.

𝑹𝒆𝒔𝒖𝒍𝒕 =
(𝑵𝑼𝑴𝟏× 𝟐 + 𝑵𝑼𝑴𝟐+ 𝟏𝟓)

𝟐

4. Test your program when NUM1 = D'20' and NUM2 = D'12'. Use the Watch window to examine

the Result variable.

1

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives

The main objectives of this experiment are to familiarize you with:

 Program flow control instructions

 Conditional and repetition structures

 The concept of modular programming

 Macros and Subroutines

Pre-lab requirements

Before starting this experiment, you should have already familiarized yourself with MPLAB software

and how to create, simulate and debug a project.

Written by Eng. Enas Jaara and Dr. Ashraf Suyyagh – Revised by Prof. Iyad Jafar

2

Experiment 2: Instruction Set Analysis 2

& Modular Programming Techniques

2

Introducing Conditional Instructions in PIC

The PIC 16series instruction set has four instructions which implement a sort of conditional statements.

These are: btfsc , btfss, decfsz and incfsz instructions.

1. btfsc checks for the condition that a bit is clear: 0 (Bit Test File, Skip if Clear)

2. btfss checks for the condition that a bit is set one: 1 (Bit Test File, Skip if Set)

3. Review decfsz and incfsz functions from the datasheet

Example 1: movlw 0x09

btfsc PORTA, 0

movwf Num1

movwf Num2

The btfsc PORTA, 0 instruction tests bit 0 of PORTA and checks whether it is clear (0) or not such that:

 If it is clear (0), the program will skip “movwf Num1” and will only execute “movwf Num2”

Only Num2 has the value 0x09

 If it is set (1), it will not skip but execute “movwf Num1” and then proceed to “movwf Num2”

In the end, both Num1 and Num2 have the value of 0x09

Accordingly, if the condition fails, the code will continue normally and both instructions will be

executed.

Now, let’s consider the following example.

Example 2: movlw 0x09

btfsc PORTA, 0

goto firstcondition

goto secondCondition

Proceed

 …….. your remaining code

firstcondition

movwf Num1

goto Proceed

secondCondition

movwf Num2

goto Proceed

Example 2 is basically the same as Example 1 with one main difference:

 If bit 0 in PORTA is clear (0), then the program will skip “goto firstcondition” and will

only execute “goto secondCondition”, the program will then execute “movwf Num2” and

then “gotoProceed”

Only Num2 has the value 0x09

 If it is set (1), it will not skip but execute “goto firstcondition”, the program will then

execute “movwf Num1” and then “gotoProceed”

Only Num1has the value 0x09

Conditional using Subtraction and how the Carry/Borrow flag is affected?

The Carry concept is easy when dealing with addition operations but it differs in borrow operations
according to Microchip implementation.

Firstcondition, secondCondition, and

Proceed are called Labels, Labels are used

to give names for a specific block of

instructions and are referred to as shown

above to change the program execution

order.

3

Carry is a physical flag; you will find it in the STATUS register,
Borrow is not implemented; it is in your mind 

In the following examples, we will show the status of the Carry/Borrow flag and how it is affected after
addition and subtraction operations.

Ex1) 99-66

 10011001 –
 01100110

 10011001+
 10011010 2’s complement of 66
100110011

There is carry (C = 1), since Borrow is the
complement of Carry, then Borrow is 0 (No
borrow) which is correct

Ex 2) 66 – 99

 01100110-
 10011001

 01100110+
 01100111
011001101

There is no carry (C = 0), since Borrow is the
complement of Carry, then Borrow is 1 (There is
borrow) which is correct

Program One: Check if a value is greater or smaller than 10. If greater, then Result will have the

ASCII value G. Otherwise, Result will have the ASCII value S.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

include "p16F84A.inc"

cblock 0x25

 testNum

 Result

endc

 org 0x00

Main

 movf testNum, W

 sublw .10 ;10d - testNum

 btfss STATUS, C

 goto Greater ;C = 0, that's B = 1, then testNum > 10

 goto Smaller ;C = 1, that's B = 0, then testNum < 10

Greater

 movlw A'G'

 movwf Result

 goto Finish

Smaller

 movlw A'S'

 movwf Result

Finish

 nop

 end

Let’s simulate this program in MPLAB to verify its operation.

1. Start a new MPLAB session, add the file program1.asm to your project.

2. Build the project.

3. Select Debugger  Select Tool MPLAB SIM.

4. Add the necessary variables and the working register to the watch window (remember that

user defined variables are found under the “Add Symbol” list).

Expect no

borrow since

99 > 66

Expect

borrow since

66 < 99

4

5. Enter values into testNum, simulate the program step by step, concentrate on what happens at

lines10-12.

6. Keep an eye on the Flags at the status bar below while simulating the code.

7. Enter other values lesser and greater and observe how the code behaves.

 What is the value stored in Result when testNum = 10? Is this correct? Can you think of a

solution?

Program Two: Counting the Number of Ones in a Register’s Lower Nibble
 Introducing simple conditional statements

This program will take a hexadecimal number as an input in the lower nibbles (bits 3:0) in a register

called testNum. The number will be masked by ANDing it with 0F (remember that 0 & Anything = 0,

while 1 & anything will remain the same). We used masking here because if the user accidentally wrote

a number in the higher nibble (bits 3:0), it will be forced to zero. The number in the lower nibble will

not be affected (ANDed with 1). The masked result will be saved in a register called tempNum.

Now, tempNum will be rotated to the right, i.e. bit0 (least significant bit) will move to the C flag of the

STATUS register after rotation. Then it will be tested whether it 0 or 1. If it is 1, the numOfOnes register

will be incremented. Else, the program proceeds. This operation will continue for 4 times (because the

number of bits in the lower nibble is 4)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 include "p16f84a.inc"

cblock 0x20

testNum ;GPR @ location 20

tempNum ;GPR @ location 21

endc

cblock 0x30

numOfOnes ;GPR @ location 30

endc

org 0x00

clrf numOfOnes ; Initially number of ones is 0

movf testNum, W ; Since we only need to test the number of ones in the lower nibble, we

 ; mask them by 0F (preserve lower nibble and discard higher nibble)

andlw 0x0F ; in case a user enters a number in the upper digit. Save masked result

movwf tempNum ; in tempNum

rrf tempNum, F ; rotate tempNum to the right through carry, that is the least

 ; significant bit of tempNum (bit0) goes into the C flag of the

 ; STATUS register, while the old value of C flag goes into bit 7 of

 ; tempNum

btfsc STATUS, C ; tests the C flag, if it has the value of 1, increment number of ones and

incf numOfOnes, F ;proceed, else proceed without incrementing

rrf tempNum, F

btfsc STATUS, C ;Same as above

incf numOfOnes, F

rrf tempNum, F

btfsc STATUS, C

Byte 8 bits

7 6 5 4 3 2 1 0

Higher 4 bits Lower 4 bits

Upper Nibble Lower Nibble

5

29

30

31

32

33

34

incf numOfOnes, F

rrf tempNum, F

btfsc STATUS, C

incf numOfOnes, F

nop

end

As you can see in program 2, we did not write instructions to load testNum with an initial value to test;

this code is general and can take any input. So, how do you test this program with general input?

After building your project, adding variables to the watch window and selecting MPLAB SIM simulation

tool, simply double click on testNum in the watch window and fill in the value you want. Then Run the

program.

Change the value of testNum and re-run the program again, check if numOfOnes hold the correct value.

Coding for Efficiency: Repetition Structures

You have observed in the code of Program 2 above that instructions from 18 to 32 are simply the same

instructions repeated over and over four times for each bit tested. Now we will introduce the repetition

structures, similar in function to the “for” and “while” loops you have learnt in high level languages.

This reduces the total number of instruction in the program.

Program Three: Counting the Number of Ones in a Register’s Lower Nibble

 Using a Repetition Structure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

 include "p16f84a.inc"

 cblock 0x20

 testNum

 tempNum

 endc

 cblock 0x30

 numOfOnes

 counter ; since repetition structures require a counter, one is declared

 endc

 org 0x00

 clrf numOfOnes

 movlw 0x04 ; counter is initialized by 4, the number of the bits to be tested

 movwf counter

 movf testNum, W

 andlw 0x0F

 movwf tempNum

Again

 rrf tempNum, F

 btfsc STATUS, C

 incf numOfOnes, F

 decfsz counter, F ; The contents of register counter are decremented then test :

6

24

25

26

 goto Again ; if the counter reaches 0, it will skip to “nop” and program

ends

 nop ; if the counter is > 0, it will repeat “goto Again”

 end

Introducing Modular Programming

Modular programming is a software design technique in which the software is divided into several

separate parts, where each part accomplishes a certain independent function. This “Divide and Conquer”

approach allows for easier program development, debugging as well as easier future maintenance and

upgrade.

Modular programming is like writing C++ or Java functions, where you can use the function many

times only differing in the parameters. Two structures which are similar to functions are Macros and

Subroutines which are used to implement modular programming.

 Subroutines

Subroutines are the closest equivalent to functions that we learnt in high-level languages. Subroutines

have the following requirements and features:

 A subroutine starts with a Label giving them a name and end with the instruction return.

 Subroutines can be written anywhere in the program after the org and before the end directives.

 Subroutines are used in the following way: Call subroutineName.

 Subroutines are stored once in the program memory, each time they are used, they are

executed from that location.

Examples:

doMath

Instruction 1

Instruction 2

 .

 .

 Instruction n

return

Process

Instruction 1

Instruction 2

 .

 .

Calculate

 Instruction 7

 Instruction 8

return

This is still one subroutine, no matter the

number of labels in between

Remember that subroutines alter the flow of the program; thus they affect the program counter

and stack. So what is the stack and how is it used? Consider the following code which contains

the main program and the doMath subroutine.

Main

Instruction1

Instruction2

Call doMath

Instruction4

Instruction5

Nop

7

Nop

doMath

Instruction35

Instruction36

Instruction37

return

Initially the program executes sequentially; instructions 1 then 2 then 3. When the instruction Call

doMath is executed, the program will no longer execute sequentially. Instead, it will start executing

Instructions35, then 36 then 37, and return. What will happen when the return instruction is executed?

What is the next instruction that is executed next?

When the Call doMath instruction is executed, the address of the next instruction (which as you should

already know is found in the program counter) Instruction4 is saved in a special memory called the

stack. When the return instruction is executed, it reads the last address saved in the stack, which is the

address of Instruction4 and then continues from there (Read section 2.4.1 of the P16F84A datasheet for

more information regarding the stack)

 Macros

Macros are declared using the macro and endm directives as shown below.

macroName macro

Instruction 1

Instruction 2

 .

 .

 Instruction n

endm

Macros have the following requirements and features:

 Macros should be declared at the beginning of your code, i.e. before the main program. It is not

recommended to declare macros in the middle of your program.

 Macros can be used in your code by only writing their name: macroName

 Each time you use a macro, the assembler will replace the macro name the you write with its

body as show in it will be replaced by its body. Therefore, the program will execute sequentially,

i.e. the flow of the program will not change and the Stack is not affected

Programs Four and Five

The following simple program demonstrates the differences between using macros and subroutines.

They essentially perform the same operation: Num2 = Num1 + Num2

 Example4 using Macro Example5 using Subroutine

1

2

3

4

5

6

include "p16f84a.inc"

cblock 0x30

 Num1

 Num2

endc

1

2

3

4

5

6

include "p16f84a.inc"

cblock 0x30

 Num1

 Num2

endc

8

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Summation macro

 movf Num1, W ;Macro

Body

 addwf Num2, F

 endm

 org 0x00

Main

 Movlw 4

 Movwf Num1

 Movlw 8

 Movwf Num2

 Summation

 Movlw 1

 Movwf Num1

 Movlw 9

 Movwf Num2

 Summation

finish

 nop

 end

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 org 0x00

Main

 Movlw 4

 Movwf Num1

 Movlw 8

 Movwf Num2

 Call Summation

 Movlw 1

 Movwf Num1

 Movlw 9

 Movwf Num2

 Call Summation

 goto finish

Summation

 movf Num1, W

 addwf Num2, F

 return

finish

 nop

 end

Analyzing the two programs and highlighting the differences

For both applications, go to View  Program Memory, let’s see the differences:

Figure 1. The example using macros

9

In the program memory window, notice that the macro name is replaced by its body. The instructions

movf Num1, W and addwf Num2, F replace the macro name @ lines 19 and 24. Using macros clearly

affects the space used by the program as it increases due to code copy.

 Figure 2. The example using subroutines

On the other hand, Figure 2 shows that the subroutine is only stored once in the program memory. No

code replacement is present.

You can also observe from the program memory that the program utilizing the macro executes

sequentially from start to end, while the second program alters the program flow. To investigate the

effect of subroutines on the stack, do the following for Program Two:

1. After building the project, go to View  Hardware Stack

2. Simulate the program up to the point when the green arrow points to the first Call Summation

instruction.

3. Look at the status bar below your MPLAB screen. What is the value of PC (program counter)?

Note that the program counter has the address of the next instruction to be executed, that is Call

Summation. Also, remember the instruction the arrow points to is not yet executed.

4. Now execute (use Single step) the Call Summation instruction.

 After doing step4, what is the address of PC?

 What is now stored at the TOS (Top of Stack)? (Refer to the Hardware Stack window)

10

 How many levels of stack are used?

5. Now, continue simulating the program (subroutine). After executing the return instruction

 What is the address of PC?

 What is now stored at the TOS?

 How many levels of stack are used?

6. Repeat the steps above for the second Call Summation instruction?

The operation of saving the address on the stack - and any other variables - when calling a subroutine

and later retrieving the address – and variables if any - when the subroutine finishes executing is

called context switching.

Important Notes:

1. Assuming both a macro and a subroutine has the exact same body (same instructions), the

execution of the subroutine takes slightly more time due to context switching.

2. You can use macro inside a macro, call a subroutine inside a subroutine, use a macro inside a

subroutine and call a subroutine inside a macro

Further Simulation Techniques: Step Over and Step Out

While stepping through program execution, you might need to execute the subroutine without seeing

the execution of instruction inside it. This is usually used when you know that that the subroutine

executes correctly and you are only interested to see execution of its instructions. For this purpose, you

can use the Step Over option in the simulation toolbar, as shown below, when you the execution reaches

the call instruction. For example, to use this option in Example 5, you need to do the following:

1. Simulate program two up to the point when the green arrow points to the first Call Summation

instruction.

2. Press Step Over, observe how the simulation runs

The Step Out option shown in the toolbar resembles Step Over operation; however, it is used when you

are already inside the subroutine and you want to continue executing the subroutine as a whole

unit without seeing how each remaining individual instruction is executed. For example, to use this

option in Example 5, you need to do the following:

1. Simulate the program up to the point when the green arrow points to the first instruction inside

the Summation subroutine: movf Num1, W

3. Press Step Out. Observe how the program execution continues from the instruction after the

Call Summation instruction.

In both cases, the instructions inside the subroutine are executed but you only see the end result of the

subroutine.

11

Measuring the Execution Time

To measure the total time spent in executing the whole program or a certain subroutine, do the

following:

1. Set the oscillator (external clock speed, Fosc) by following the figure below.

2. Set the processor frequency to 4MHz. This means that each instruction cycle time is 4MHz/4

= 1MHz and T = 1/f = 1/MHz = 1µs.

3. Now set breakpoints at the beginning and end of the code you want to calculate time for

4. Go to Debugger  Stop Watch

12

5. Now run the program, when the pointer stops at the first breakpoint, Press Zero.

6. Run the program again. When the pointer reaches the second breakpoint, read the time from

the stopwatch. This is the time spent in executing the code between the breakpoints.

Modular Programming

How to think Modular Programming?

Initially, you will have to read and analyze the problem statement carefully, based on this you will have

to:

1. Divide the problem into several separate tasks.

2. Look for similar required functionality.

Non Modular and Modular Programming Approaches: Read the following problem statement

A PIC microcontroller will take as an input two sensor readings and store them in Num1 and Num2. Then,

it will multiply both values by 5 and store them in Num1_5, and Num2_5. At a later stage, the program will

multiply Num1 and Num2 by 25 and store them in Num1_25 and Num2_25 respectively.

Analyzing the problem above, it is clear that it has the following functionality:

 Multiply Num1 by 5

 Multiply Num2 by 5

 Multiply Num1 by 25

 Multiply Num2 by 25

As you already know, we do not have a multiply instruction in the PIC 16F84A instruction set, so we do

it by addition. Remember:

13

2 x 3 = 2 + 2 + 2 ; add 2 three times

7 x 9 = 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 ; add 7 nine times

So, we write a loop that repeats the addition operation certain number of times. For example, suppose

we want to multiply 9x4 and number 4 is in location temp. Initially one nine is placed in W, then we

construct a loop to add the remaining 8 nines:

movlw .8 ; because we put the first 4 in W, then we add the remaining 8 fours to it

 movwf counter

 movf temp, w ; 1st four in W

add

 addwf temp, w

 decfsz counter, f ; decrement counter, if not zero keep adding, else continue

 goto add

; continue with code

The following table compares the code required to perform multiplication by 5 using non-modular and

modular approaches.

A Non Modular Programming Approach Modular Programming Approach

Write multiply code for each operation above

Write one “Multiply by 5” code, use it two times

Write one “Multiply by 25” code, use it two

times

Note that you do not need to write the “Multiply

by 25” code from scratch, since 25 is 5x5, you

can simply use “Multiply by 5” two times!

 Code lines: 38 Code lines: 27

get Num1

Write whole code to multiply Num1 by 5

Store in Num1_5

get Num2

Write whole code to multiply Num2 by 5

Store in Num2_5

get Num1

Write whole code to multiply Num1 by 25

Store in Num1_25

get Num2

Write whole code to multiply Num2 by2 5

Store in Num2_25

goto finish

nop

1

7

1

1

7

1

1

7

1

1

7

1

1

1

get Num1

call “multiply by 5” function

Store in Num1_5

get Num2

call “multiply by 5” function

Store in Num2_5

get Num1

call “multiply by 25” function

Store in Num1_25

get Num2

call “multiply by 25” function

Store in Num2_25

goto finish

nop

A single Multiply by 5 function

A single Multiply by 25 function

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

5

include "p16f84a.inc"

cblock 0x30

include "p16f84a.inc"

cblock 0x30

14

 Num1

 Num2

 Num1_5

 Num2_5

 Num1_25

 Num2_25

 temp

 counter

endc

 org 0x00

Main

 movf Num1, w ;Num1 x 5

 movwf temp

 movlw .4

 movwf counter

 movf temp, w

add1

 addwf temp, w

 decfsz counter, f

 goto add1

 movwf Num1_5

 movf Num2, w ;Num2 x 5

 movwf temp

 movlw .4

 movwf counter

 movf temp, w

add2

 addwf temp, w

 decfsz counter, f

 goto add2

 movwf Num2_5

 movf Num1, w ;Num1 x 25

 movwf temp

 movlw .24

 movwf counter

 movf temp, w

add3

 addwf temp, w

 decfsz counter, f

 goto add3

 movwf Num1_25

 movf Num2, w ;Num2 x 25

 movwf temp

 movlw .24

 Num1

 Num2

 Num1_5

 Num2_5

 Num1_25

 Num2_25

 temp

 counter

endc

 org 0x00

Main

 movf Num1, w ;Num1 x 5

 call Mul5

 movwf Num1_5

 movf Num2, w ;Num2 x 5

 call Mul5

 movwf Num2_5

 movf Num1, w ;Num1 x 25

 call Mul25

 movwf Num1_25

 movf Num2, w ;Num2 x 25

 call Mul25

 movwf Num2_25

 goto finish

Mul5

 movwf temp

 movlw .4

 movwf counter

 movf temp, w

add

 addwf temp, w

 decfsz counter, f

 goto add

 return

Mul25

 movwf temp

 call Mul5

 movwf temp

 call Mul5

 return

finish

 nop

 end

15

 movwf counter

 movf temp, w

add4

 addwf temp, w

 decfsz counter, f

 goto add4

 movwf Num2_25

 goto finish

finish

 nop

 end

Passing Parameters to Subroutines

Subroutines and macros are general codes; they work on many variables and generate results. So, how

do we tell the macro/subroutine that we want to work on this specific variable? We have two

approaches:

Approach 1 Approach 2

Place the input in the working register

Take the output from the working register

Example:

Main

 Movlw 03 ;input to W

 Call MUL_by4

 Movwf Result1 ;output from W

 Movlw 07 ;input to W

 Call MUL_by4

 Movwf Result2 ;output from W

 Nop

 .

 .

MUL_by4

 Movwf temp

 Rlf temp,F

 Rlf temp, F

 Movf temp, W ;place result in W

 Return

Store the input(s) in external variables

Load the output(s) in external variables

Example:

 Movf Num1, W ;load Num with Num1

 Movwf Num

 Call MUL_by4

 Movf Result, W ;read the result and store

 Movwf Result1 ;it in Result1

 Movf Num2, W ;load Num with Num2

 Movwf Num

 Call MUL_by4

 Movf Result, W ;read the result and store

 Movwf Result2 ;it in Result2

MUL_by4

 Rlf Num,F

 Rlf Num, W

 Movwf Result ;place result in W

 Return

In this approach, the MUL_by4 subroutine takes

the input from W (movwf), processes it then

places the result back in W. Notice that we initially

load W by the numbers we work on (here 03 and

07) then we take their values from W and save

them in Result1 and Result2 respectively

In this approach the MUL_by4 subroutine expects

to find the input in Num and saves the output in

Result. Therefore, before calling the subroutine we

load Num by the value we want (here Num1) and

then take the value from Result and save it in

Result1. The same is repeated for Num2

This approach is useful when the

subroutine/macro has only one input and one

This approach is useful when the

subroutine/macro takes many inputs and

16

output produces multiple outputs

Special Subroutines: Lookup Tables

Lookup tables are a special type of subroutines which are used to retrieve values depending on the

input they receive. They are invoked in the same as any subroutine: Call tableName. They work on the

basis that they change the program counter value; therefore, alter the flow of instruction execution. The

retlw instruction is simply a return instruction with additional feature that is returning a value in W

when it is executed.

Syntax:

lookUpTableName

addwf PCL, F ;add the number found in the program counter to PCL (Program counter)

 nop

 retlw Value ;if W has 1, execute this

retlw Value ;if W has 2, execute this

retlw Value

…

retlw Value

Value can be in any format: decimal, hexadecimal, octal, binary and ASCII. It depends on the

application you want to use this look-up table in.

Program Six: Displaying the 26 English Alphabets

This program works as follows. Counter is loaded with 1 because we want to get the first letter of the

alphabet, when we call the look-up table, it will retrieve the letter ‘A’. The counter is incremented by 1

and then checked if we have reached the 26th letter of the alphabet (27 – the initial 1), if not we proceed

to display the second letter ‘B’ and the third ‘C’ and so on. When we have displayed all the alphabets,

counter will have the value 27 after which the program exits.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

include "p16f84a.inc"

cblock 0x25

 counter ;holds the number of Alphabet displayed

 Value ;holds the alphabet value

endc

 org 0x00

Main

 movlw 1 ;Initially no alphabet is displayed

 movwf counter

Loop

 movf counter, W

 call Alphabet ;display Alphabet

 movwf Value

 incf counter, F ;Each time, increment the counter by 1

 movf counter, w ;if counter reaches 27, exit loop else continue

 sublw .27

 btfss STATUS, Z

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 goto Loop

 goto finish

Alphabet

 addwf PCL, F

 nop

 retlw 'A'

 retlw 'B'

 retlw 'C'

 retlw 'D'

 retlw 'E'

 .

 .

 retlw 'Z'

finish

 nop

 end

Exercise.

1. Complete the look-up table above with the missing alphabet

2. Add both counter and value to the watch window.

3. Place a breakpoint @ instruction 14: incf counter, F

4. Run the program, keep pressing run and observe the values of the variables in the Watch

window

Appendix A: Documenting your program

It is a good programming practice to document your program in order to make it easier for you or
others to read and understand it. For that reason, we use comments. A proper way of documenting your
code is to write a functional comment, which is a comment that describes the function of one or a set
of instructions. In MPLAB IDE, comments are defined after a semicolon (;) and are not read by MPLAB
IDE.

BSF STATUS, RP0
; Switch to Bank 1 Good comment √
; Set the RP0 bit in the Status Register to 1 Bad Comment, no new added info X

How to professionally document your program?

At the beginning of your program, you are encouraged to add the following header which gives an
insight to your code, its description, creator, version, date of last revision, etc… Most importantly, it is
encouraged to document the necessary connections and classify them as input/output.

;**

; * Program name: Example Program

; * Program description: This program …….

; *

; * Program version: 1.0

; * Created by Embedded lab engineers

; * Date Created: September 1st, 2008

; * Date Last Revised: September 16th, 2008

18

;**

; * Inputs:

; * Switch 0 (Emergency) to RB0 as interrupt

; * Switch 1 (Start Motor) to RB1

; * Switch 2 (Stop Motor) to RB2

; * Switch 3 (LCD On) to RB3

; * Outputs:

; * RB4 to Motor

;* RB5 to Green LED (Circuit is powered on)

;**

1. Your code declarations go here: includes, equates, cblocks, macros, origin, etc…

2. Your code goes here…

3. When using subroutines/macros, it is advised to add a header like this one before each to

properly document and explain the function of the respected subroutine/macro.

;**

;* Subroutine Name: ExampleSub

;* Function: This subroutine multiplies the value found in the working register by 16

;* Input: Working register

;* Output: Working register * 16

;***************************************

19

Appendix B: Instruction Listing

1

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Name:

Student ID:

Section (Day/Time):

MPLAB and Instruction Set Analysis 2

COMPUTER NAME:

Labsheet
2

2

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

EMBEDDED SYSTEMS LABORATORY CPE0907334
Labsheet 2: Instruction Set Analysis 2 & Modular Programming

Techniques

Name: Student ID:

Section:

Pre-lab) Part 1: Starting up with instructions

Answer the following short questions:

A) Write the instructions needed to check if the value found in REGA equal to 10.

B) Write the instructions needed to check if the value found in REGA equal to zero.

(Pre-lab) Part2: Code Analysis Skills

Answer the following questions regarding Program 3 in the experiment on page 5. Each

question is independent from the others.

1. What will the results of the Program 3 be when we substitute the instruction @ line 23

“decfsz counter, F” with decfsz counter, W?

2. Assuming that the PIC runs at an external oscillator speed of 4 MHz? What is the time spent in

executing the Program 3.asm code to reach the NOP instruction?

3

(Pre-lab) Part3: Code Writing Skills

Modify Program1.asm code in the experiment to test if testNum has the decimal value 10, then

Result will have the ASCII value ‘R’.

Your code

Part4: Code Analysis Skills

Read and simulate the given code Labsheet2.asm and answer the questions which follow. To

prepare for simulation, perform the following steps:

 Go to View Menu -> Watch.

 From the drop out menu choose the registers you want to watch during simulation and click

ADD Symbols for each one (Num, Num_7, Num_49).

 Select Debugger ->Select Tool ->MPLAB SIM.

 Simulate the program.

1. What will be stored in the following registers when Num has the values listed in the table

below?

Num

Value of Num_7 after

Mul7 subroutine call in

Main

Value of Num_49 after

Mul49 subroutine call in

Main

0x02

0x05

2. What is the total number of instructions inside the Mul49 subroutine?

4

3. Where does Mul7 subroutine expect to find its input? Where does it store its output?

Input:

Output:

4. What is the value at the top of stack when the Mul49 subroutine call instruction executed is?

Part 5: Timing Program Execution

Consider the following code. Determine the elapsed time when the program execution reaches the

NOP instruction inside the L1 subroutine. Assume a PIC16F84A microcontroller running at 800KHz.

Use the Stop Watch tool in MPLAB. You need to load locations CNT1 and CNT2 and VAL with values

0x15, 0xC2 and 0x05, respectively, before simulating the code. Show your simulation to the

supervisor.

 #include "P16F84A.inc"

cblock 0x25

 CNT1

 CNT2

 VAL

 endc

 org 0x0000

 movf CNT1, W

 subwf CNT2, F

 decf CNT2, F

 btfss STATUS, C

 call L1

 incf VAL, F

L1 incf VAL, F

 movf CNT2, W

 andwf VAL, F

 bcf STATUS, C

 rrf VAL, F

 decfsz CNT1, F

 goto L1

 nop

 return

 end

Time =

5

Part 6: Code Writing Skills

Write a program which converts a number from unpacked BCD format saved in three registers to one

decimal number, assuming that registers names are BCDH, BCDM and BCDL. BCDH (High Digit of the

decimal number) is at location 0x21, BCDM (Mid Digit of the decimal number) is at location 0x22,

BCDL (Low Digit of the decimal number) is at location 0x23, and Result is at location 0x40. Also,

assume that all BCD numbers are in the valid range of 0 – 9.

For example, if BCDH = 2, BCDM = 4 and BCDL = 3, then your program should do the math to store the

value D'243' in location Result. This can be done by writing the code to perform the following

operation

Result = BCDL + BCDM x 10 + BCDH x 100

You are required to use modular programming in your code.

Perform simulation after entering some values for BCDL, BCDM and BCDH and show the results to the

supervising engineer. You will need to watch the variables BCFL, BCDM, BCDH and Result.

Copy and paste your code here.

1

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives

The main objectives of this experiment are to familiarize you with:

 Program flow control instructions

 Conditional and repetition structures

 The concept of modular programming

 Macros and Subroutines

Pre-lab requirements

Before starting this experiment, you should have already familiarized yourself with MPLAB software and

how to create, simulate and debug a project.

Written by Eng. Enas Jaara and Dr. Ashraf Suyyagh – Revised by Prof. Iyad Jafar

3

Experiment 3: Basic
Embedded System Analysis

and Design

2

1. Starting-up System Design

When we attempt to design a system that is required to perform complex tasks, it is essential that we
think about the design flow and establish an overall system design before immediately jumping into
implementation and coding in order for the program be written flawlessly and smoothly and the system
functions correctly. In this way you don't waste time writing a flawed incomplete program, or which
addresses the wrong problem or which is missing some flow scenarios.

A well-established diagramming technique is the flowchart. A flowchart is a schematic representation of

an algorithm, showing the steps and operations in the algorithm using different shapes that are connected

using unidirectional arrows to show their sequence. Flowcharts are used in designing and/or

documenting programs. As programs get more complex, flowcharts help us follow and maintain the

program flow. This makes a program easier to write, read, and understand. Other techniques used are

state diagrams which are not covered in this course.

A good practice in designing complex systems is to break them into smaller pieces where each carries out

few simple related tasks of the overall system. Thus, the system is built from these simple subsystems. In

this approach, you need only to care about how these subsystems interface with each other. As you

learned in Experiment 2, subroutines allow the programmer to divide the program into smaller parts

which are easier to code. In system design methodology, this is called the “Divide and Conquer” approach.

Generally, the basic steps in system design are:

Step 1: Requirements Definition

1. Reading the problem statement for what is needed to do, divide if it is complex.

2. What do I need to solve? Should I do it in software or hardware?

3. Determine the inputs and outputs for the hardware.

Step 2: System and Subsystem Design

4. Partition overall architecture into appropriate sub-systems.

5. Draw a detailed flowchart for each sub-system.

Step 3: Implementation

6. Translate flowcharts into code.

7. Integrate subsystem into one code/design.

Step 4: System Testing and Debugging

8. Run the program/hardware and see if it works correctly. If not, attempt to fix the program

by reviewing the above steps and refining your design along with it.

The above steps prove essential as programs get harder and larger. Next, we will present a real life

example from the industrial automation field to demonstrate the design process.

2. Design Example – An Industrial Filling Machine

Problem Statement

We are to design an embedded system which controls a filling machine that works as follows. Empty
bottles move on a conveyer belt. When a bottle is detected, the conveyor belt stops and a filling pump
starts working for some time to fill the bottle. When the bottle is filled, the total number of filled bottles
is increased by one and is shown on a common cathode 7-Segments display. Afterwards, the conveyor
belt starts again and the machine does the same thing for the next bottle and so on. When the total number
of bottles reaches nine, the machine stops for manual packaging. At this phase, one LED lights on an 8-
LED row and moves back and forth. The conveyor belt does not start again until the resume button is
pressed. Moreover, the LED array turns off. Figure 1 shows an example of the filling machine.

3

Figure 1. An industrial filling machine

In order to design this system and determine the required hardware and their role as input or output,
we will follow the steps listed previously.

Step1: Requirements Definition and Analysis

To analyze the system, let’s remember the following:
 An Output in embedded system means a signal need be sent from the PIC to external hardware

for control purposes.
 An input in embedded system means a signal is received from external hardware into the PIC for

processing.
 Processing in embedded system means a certain code which does the required job.

Accordingly, and based on the problem statement, we can identify the following operations:

1. The empty bottles move on a conveyer belt and when a bottle is detected, the conveyor belt stops.
This implies that:
 There is a motor which controls the conveyor “conveyor motor”. The PIC should control the

motor. So, there we need an Output to control the motor.
 There is a sensor which detects the presence of a bottle “bottle sensor”. The PIC should read

the sensor reading. So, we need an Input.

2. A filling machine starts filling the bottle for a specified period of time after which the filling
machine stops. This implies that:
 There is a pump/motor which is turned on/off to fill the bottle “filling motor”. The PIC should

control the pump. So, we need an Output.
 We need a mechanism to calculate this time period. This is Processing done by the PIC. Can

be done using hardware timers or software delay loops.

3. The total number of filled bottles is increased by one and shown on a common cathode 7-
Segments display. This implies that:
 We need some sort of a counter. Reserve a memory location (GPR) in the PIC
 We need to output the value of this counter to a 7-segment display. Output

4. The conveyor belt starts again and the machine does the same thing for the next bottle and so on.

When the total number of bottles reaches nine the machine stops for manual packaging. This

implies that:

 We need to check the counter value continuously. This is Processing done by the PIC.

5. When the number of bottles is 9, one LED lights on an 8-LED row and moves back and forth. Also,

the conveyor belt does not start again until the resume button is pressed. When the button is

4

pressed, the LED array turns off and the system restarts the operation. This implies that:

 We need a code to control the LED lights. The PIC should control the LEDs. So, we need an
Output for each of these 8 LEDs.

 We need a mechanism to check for the resume button key press. The PIC should read the
button. So, we need an Input.

As you have seen above, we need to interact with external components; like the motors, 7-Segments
and the LEDs (output devices), as well as s ensors and switches (input devices). Almost any embedded
system needs to transfer digital data between its CPU and the outside world. This transfer achieved
through input /output ports.

A quick look to the 16F84A or 16F877A memory maps reveals multiple I/O ports: PORTA and PORTB
for the 16F84A, and the additional PORTC, PORTD and PORTE for the 16F877A. These ports are general-
purpose bi-directional digital ports. Each port is associated with a direction register called TRISx that
controls the direction of PORTx pins. A logic one in bit position k of TRISx register configures pin k of
PORTx as input. On the other hand, if this bit is 0, the pin is configured as output. A pin can be configured
as input or output an any instant of time, but not simultaneously. Figure 2 shows an example of
configuring the pins in PORTA. Also, Table 1 shows some examples on how to configure the ports in
software.

Figure 2. Configuring pins in PORTA.

Table 1. Examples on configuring ports in software

movlw 0x0F
movwf TRISB

clrf TRISC clrf TRISD
comf TRISD, F

movlw B’00110011’

movwf TRISB

The high nibble of

PORTB is output, low

nibble is input

Whole PORTC as
output

Whole PORTD as input Bits 2, 3, 6, 7 as output

Bits 0, 1, 4, 5 as input

Note on PORTA and PORTE:

As you remember from the Embedded Systems course, PORTA and PORTE pins can be used as analog
inputs and in this case they are connected to the A/D converter. In order to specify whether these pins
are digital or analog, we need to configure the bits in the ADCON1 register (Refer to the datasheet for
more details on choosing the values for ADCON1). For example, to configure all the pins in PORTA as
digital, we can write:

BANKSEL ADCON1

MOVLW 06H ; set PORTA as general

MOVWF ADCON1 ; Digital I/O PORT

5

How to decide whether microcontroller’s ports must be configured as inputs or outputs?

Input ports “Get Data” from the outside world into the microcontroller while output ports “Send
Data” to the outside world. For example:

 LEDs, 7 -Segment displays, motors and LCDs that are interfaced to the microcontroller ports
should be configured as output.

 Switches, push buttons, sensors, keypad and LCDs that are interfaced to microcontroller’s ports
should be configured as input.

In the system under consideration, we will use the following configuration:

Inputs:

 RA2: Bottle sensor

 RA3: Resume button

Outputs:

 RB0 to RB7: LEDs array

 RC0: Machine motor ON/OFF

 RC1: Filling machine ON/OFF

 RD0 to RD6: 7-Segments outputs from “a” to “g”, respectively

Step 2: System and Subsystem Design

Divide the overall system into appropriate sub-systems. The design of a subsystem includes:

 Defining the processes/functions that are carried out by the subsystem.
 Determining the input and output of the subsystem (Subsystem Interface).

A good practice in writing programs for embedded systems is to have “Initial” and “Main” subroutines
in the program. The initial subroutine is used to initialize all ports, SFRs and GPR’s used in the program
and thus is only executed once at system startup. The Main subroutine contains all the subroutines
which perform the functions of the system. Many embedded applications require that these functions
to be performed repeatedly; thus the program usually loops through the Main subroutine code infinitely.

Note: When designing a system, you should not expect to get the same design that others get. Each one
of you has her/his own thinking style and therefore designs the system differently; some might divide
a certain problem into two subsystems, others into three or four. As long as you achieve a simple, easy
to understand, maintainable and correct fully working system, then the goal is achieved! Therefore, the
following subsystem design of the above problem is not the only one to approach and solve the problem.
You may divide your subsystems differently depending on the philosophy and system structure you
deem as appropriate.

Step 3: Implementation

Based on the analysis of the system operation we obtained in Step 1 and Step 2, we can visualize the
general operation of the system in the flowchart shown in Figure 2. As we mentioned earlier, it is good
practice to divide the tasks in the system into subroutines. In our design, we decided to distribute these
tasks to five main subroutines as shown in Figure 2. These subroutines are:

 Initial Subroutine: it configures the ports and starts the conveyer belt.

 Update_Seven_Seg subroutine: reads the total number of filled bottles and converts it to seven
segment code.

 Test_and_Process subroutine: displays the number of bottles on the 7segment, waits for bottle,

stops the conveyor, fills the bottle, and restarts the conveyor.
 Test_Resume subroutine: checks if total number of filled bottles is nine. If so, it stops the

machine and invokes the LEDs subroutine.

 LEDs: moves the LED in the LED array back and forth and tests for pressing the resume button

press.

6

Start

Initialize Ports and Start Conveyer

Read Number of Bottles and Convert to 7-Segment Code

Stop Filling Pump, Increment Number of Filled Bottles and Start Conveyer

Stop Machine

Bottle
Detected?

Stop Conveyer and Start Filling Pump to Fill the Bottle

Rotate LED on LED Array

Resume
Button

Pressed?

Display Number of Bottles on 7-Segment Display

Yes

 No

Time to Fill is
Over?

Yes

 No

Number of Filled
Bottles is 9?

Yes

No

No

Yes

Initial
Subroutine

Update_Seven_Seg
Subroutine

Test_and_Process
Subroutine

Test_and_Resume
Subroutine

LEDs
Subroutine

Figure 2. Overall flowchart of the system.

7

In addition to these subroutines, we will need to generate time delay to wait for the filling pump to fill
the bottle and to move the LED on the LEDs array. For this purpose, we will define the Simplest_Delay
subroutine

Based on our analysis and design, the code of the Main program is given below. Note the sequence of
calling the subroutines and how the operation is repeated indefinitely. In the following, we will discuss
each of these subroutines in details.

Main

CALL Initial ; Initialize Ports, SFRs and GPR’s

Main_Loop

CALL Update_Seven_Seg ; Test the number of Bottles and displays it on the 7-

 ; Seg.

CALL Test_and_Process ; Keep testing the bottle sensor, if bottle found,

 ; process it,
; else wait until a bottle is detected

CALL Test_Resume ; Check if No. of bottles is 9, if yes test if resume button is
 ; pressed, else skip and continue code

 GOTO Main_Loop ; Do it again

The Initial Subroutine

This subroutine is primarily used for configuring the ports as required and initializing the variables. The

code is given below.

Initial

CLRF BottleNumber ; Start count display from zero

BANKSEL TRISD ; Set register access to bank 1

CLRF TRISC ; Set up all bits of PORTC as outputs

CLRF TRISD ; Set up all bits of PORTD as outputs, connected to
 ; Common Cathode 7- Segments Display

CLRF TRISB ; Set up all bits of PORTB as outputs, connected to
 ; LED array

MOVLW 0x0C ; Set up bits (1-2) of PORTA as inputs; RA3:
MOVWF TRISA ; resume button, RA2: bottle sensor, others not used

BANKSEL ADCON1

MOVLW 06H

MOVWF ADCON1 ;set PORTA as general Digital I/O PORT

BANKSEL PORTA

CLRF PORTB ; Initially, all LEDs are off

BSF PORTC, 0 ; Start conveyer motor

RETURN

The Update_Seven_Seg Subroutine

This subroutine returns the appropriate common cathode 7-Segments representation of the number of

bottles in order for it to be displayed by the consecutive subroutine. Clearly, the signals sent to the 7-

Segments display are not decimal values, but according to the 7-Segment layout (Refer to the

Hardware Guide for more information.). Accordingly, we have to convert the decimal number of

bottles found in the bottle counter BottleNumber to the appropriate common cathode 7-Segments

number representation. To do so we define the 7-segment representations of the decimal number 0-9

as constants and use a Look-up table to get the correct representation for each bottle number.

8

Zero equ B’11000000’
One equ B’11111001’
Two equ B’10100100’
Three equ B'10110000'
Four equ B'10011001'
Five equ B'10010010'
Six equ B'10000010'
Seven equ B'11111000'
Eight equ B'10000000'
Nine equ B‘10010000’

Update_Seven_Seg

Movf BottleNumber, W
Addwf PCL, F
Retlw Zero
Retlw One
Retlw Two
Retlw Three
Retlw Four
Retlw Five
Retlw Six
Retlw Seven
Retlw Eight
Retlw Nine

Figure 3. The Update_Seven_Seg Subroutine and the definition of the seven segment codes.

In our design, the 7-segment display is common-anode and is connected to PORTD such that RD0 is

connected to segment a, RD1 is connected to segment b, and so on. So, in the beginning of our program

we define a set of 10 constants for the 7segment codes and assign them the values as shown in Figure 3.

The Test_and_Process Subroutine

This subroutine displays the current bottle count on the 7-segment display and tests if a bottle is present
or not. If a bottle is detected, the conveyor motor is stopped, the filling pump starts working for a
specified period of time to fill the bottle and then stops. Afterwards, the conveyor belt starts moving
again. Finally, the number of bottles is incremented by one. Figure 4 shows the flowchart of this
subroutine and the corresponding code. Note how the subroutine starts with the movwf PORTD to output
the 7-segment code to PORTD. The code is already in the Working register after calling the
Update_Seven_Seg subroutine.

Display Number of Bottles on 7-Segment Display

Bottle
Detected?

RA2=1?

Stop Conveyer Belt

Yes

 No

Start Filling Pump

Wait Until Bottle is Filled

Start Conveyer

Increment Number of Bottles

Exit

Test_and_Process
 movwf PORTD ; display on the 7-Seg

poll btfss PORTA,2 ; Test the bottle sensor
goto poll
bcf PORTC,0 ; stop conveyer motor
bsf PORTC,1 ; start filling motor
call Simplest_Delay ;Insert delay to
 ; fill bottle
bcf PORTC,1 ; stop filling motor
bsf PORTC,0 ; start conveyer motor
incf BottleNumber,F
return

Figure 4. Test_and_Process Subroutine.

9

The Test_and_Resume Subroutine

This subroutine checks if the total number of bottles has reached nine. If not, it will exit and return to the

main program to continue the operation. Otherwise, it stops the conveyer motor to package the filled

bottles manually. At this moment, one LED lights on an 8-LED-row and moves back and forth. The

conveyor belt does not start again until the resume button is pressed. These last two operations are

performed using the LEDs subroutine that is called inside this subroutine. The flowchart and the code for

the Test_and_Resume subroutine is given Figure 5.

Display 9 on 7-Segment Display

Yes

Stop Conveyer Motor

Turn on One LED on LED Array

Start Conveyer

Clear Number of Bottles to Start over

Exit

BottleNum is 9?

No

Test_and_Resume
movf BottleNumber, w
sublw .9
btfss STATUS, Z
goto fin1 ; return
call Update_Seven_Seg
movwf PORTD ; display on the 7-seg
bcf PORTC, 0 ; stop conveyer motor
bcf STATUS, C
clrf BottleNumber ; Reset System
call LEDs ; rotate LEDs and check resume
 ; button

fin1
 return

Figure 5. Test_and_Resume Subroutine.

The LEDs Subroutine

This subroutine lights one LED on an 8-LED-row and continuously moves it back and forth in this fashion.

In between, it checks the resume button. If pressed, the conveyor motor starts again and the LED array

turns off; else the LEDs keep rotating and the resume button checked. Figure 6 shows the flowachart and

code for this subroutine.

The Simplest_Delay Subroutine

This subroutine is used to generate a time delay for filling the bottle and controlling the motion of the

LED on the LED array. It is composed of two nested loops that decrement two counters; as we learned in

class. The code for this subroutine is shown in Figure 7.

10

Turn on One LED on LED Array

Exit

Is the Resume
Button Pressed?

RA3 =1?

Yes

Insert Sufficient Delay to Make the
Activated LED Visible

Move the ON LED on Position to the Left

Is C Flag = 1?
(LED has been Shifted

8 times)

No

No

Insert Sufficient Delay

Move the ON LED on Position to the Right

Yes

Is the Resume
Button Pressed?

RA3 =1?

Is C Flag = 1?
(LED has been Shifted

8 times)

No

Yes

No

Yes

Start Conveyer Motor

Turn on the First LED

LEDs

bsf PORTB, 0 ; turn on the 1st LED
Rotate_Left

call Simplest_Delay
rlf PORTB, F
btfsc PORTA, 3 ; check Resume
button goto fin
btfss STATUS, C
goto Rotate_Left

Rotate_Right
call Simplest_Delay
rrf PORTB, F
btfsc PORTA, 3 ; check Resume
button
goto fin
btfss STATUS, C
goto Rotate_Right
goto Rotate_Left

fin
clrf PORTB ; turn off LED array
bsf PORTC, 0 ; start conveyer
motor
return

Figure 6. LEDs Subroutine.

11

Simplest_Delay
movlw 0xFF
movwf MSD
clrf LSD

loop2
decfsz LSD, F

goto loop2

decfsz MSD, F

goto loop2

return

Figure 7. The Simplest_Delay Subroutine.

4. How to Simulate This Code in MPLAB?

Step4: System Testing and Debuggin

You have learnt so far that in order to simulate inputs to the PIC, you usually entered them through the

Watch window. However, this is only valid and true when you are dealing with internal memory registers.

In order to simulate external inputs to the PIC pins, we are to use what is called a Stimulus. The Stimulus

option is available in the Debugger menu as shown in Figure 8. When you select New Workbook, a new

window will appear where you can add the pins to stimulate and specify type action to happen on this

pion when stimulated.

In our system, we are observing two external inputs: The first one is the bottle sensor which is connected

to RA2. We will assume that the sensor generates a positive pulse when it detects a bottle. The second

input is the Resume button which is connected to RA3. Also, it is assumed that it generates a positive

pulse when it is pressed. In order to activate these inputs while simulating the program, follow the

following steps:

1. Select Debugger  Stimulus  New Workbook as shown in Figure 8. A stimulus window opens

Figure 8. Stimulus window.

12

2. Click on a cell under Pin/SFR and select the pin that you want to stimulate. Add AN2 and AN3

which correspond to RA2 and RA3, respectively. For both pins, specify the action to be Pulse High

under the Action column, under the Width column specify the width of the pulse to be 20, and

under the Unit write 20 (Check Figure 8). This implies that this pin will receive a positive pulse

with duration of 20 processor cycles when activated.

3. In the code of the program, place a breakpoint at the instruction BTFSS PORTA, RA2 inside the

Test_and_Process subroutine. This will allow us to change the reading of the bottle sensors during

program simulation.

4. In the code of the program, place a breakpoint at the instruction BTFSS PORTA, RA3 inside the

LEDs subroutine. This will allow us to change the reading of the bottle sensors during program

simulation.

5. Run your code, you will go to the First break point then press “Step Into” you will observe that

you have stuck in loop.

6. Now Press “Fire”, the arrow next to the RA2 in the Stimulus pin. What do you observe?

7. Now press “Step Into” again, observe how the value of BottleNumber change.

8. Press “Run” then “Fire” again, observe how the value in BottleNumber changes whenever you

reach the first breakpoint. Keep doing this until the program stops at the second breakpoint inside

the LEDs subroutine.

9. Press “Step Into” you will observe that you have stuck in loop.

10. Now Press “Fire”, the arrow next to the RA3 in the Stimulus pin.

11. Now press “Step Into” again, observe how the value of BottleNumber changes to ZERO.

5. Simulation Using Proteus

Proteus PIC Bundle is the complete solution for developing, testing and virtually prototyping your
embedded system designs based around the Microchip Technologies TM series of microcontroller. This
software allows you to perform schematic capture and to simulate the circuits you design. Please to refer
to the “Introduction to Proteus.pdf” file to learn how to use Proteus to simulate the filling machine
example.

The complete code that control the system can be found in the “Experiment 3 Filling Machine Code.asm”
file and the Proteus circuit for the system is available in the “Experiment 3 Filling Machine Proteus
Circuit” file.

6. Building the Hardware of the System

Once you have designed your system and tested it, you will need to build it using actual hardware
components. This usually requires knowledge about the hardware components and how they can be
used, in addition to good fundamentals in circuits and electronics. The file “Guide to Hardware.pdf”
outlines the basic hardware components and some technical issues that you usually need to know in
order to build simple build embedded systems.

In order to give you some experience in this, the second part of this experiment is a simple exercise on
how to wire up a simple embedded system. The details of this part are in Labsheet_3B.pdf file.

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Name:

Student ID:

Section (Day/Time):

Basic Embedded System Analysis and
Design

COMPUTER NAME:

Labsheet

3

2

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet3: Basic Embedded System Analysis and Design

Name: Student ID:

Section:

Note: Before you start, you should read the tutorial on how to use The Proteus Program and

The Guide to Hardware Tutorial that are available on the website.

In this experiment, you are required to use a PIC16F877A microcontroller to design a simple

embedded system that has eight light emitting diodes (LED) two pushbuttons (START and

INCREMENT). The anodes of the LEDs are connected to PORTC while the pushbuttons are connected

to RB0 and RB1 using pull-down resistors (Refer to the Guide to Hardware Tutorial).

The system supposed to control the LEDs as follows:

1. When the system starts, the LEDs are off and the system waits the user to press the START

pushbutton. Nothing will happen until the user presses the START button.

2. When the START pushbutton is pressed, the system will turn ON all the LEDs for some time

and then turn them off. Afterwards, it starts monitoring the second pushbutton which we will

call the INCREMENT button.

3. Whenever this button is pressed, the system increments internal variable VALUE by 50 and

displays it on the LEDs.

4. When the VALUE is greater than 155, the system flashes all LEDs 3 times, resets VALUE and

restarts its operation; i.e. it will wait for the START button to be pressed.

(Pre-lab)

1) Determine the required hardware and assign I/O pins.

Inputs:

Outputs:

2) The Initial and Main Codes:

Your code should have at least 2 subroutines: Initial and Main subroutines. The Initial

subroutine is used to initialize all ports, SFRs and GPR’s used in the program and thus is only

executed on the system start up. The Main subroutine contains all the subroutines which

perform the functions of the system. In the space below, write the code of the Initial

Subroutine.

3

Initial

3) In addition to the Initial and Main subroutines, you will need a delay subroutine to control

the flashing of the LEDs when VALUE is greater than 50. You can use the Simplest_Delay

subroutine given in Experiment 3. Write the code of this subroutine in the space below.

Simplest_Delay

4) After analyzing the system operation, draw the flowchart(s) of the main program and the

new subroutines that you will use.

In Lab

1)Write the code all subroutine and the main program. Note: The nature of the system requires

it runs continuously, the program code will loop through specific subroutines which

implement the system function.

In the space below, copy and paste the whole code of your program.

2) In order to test your program, you will use the Proteus circuit simulator. In this simulator,

you can draw the circuit of your system and load your code to test it. Please refer to the

Introduction _to _ Proteus tutorial that is available on the website.

For this experiment, we have prepared the circuit of the system in the Labsheet 3 Proteus

file. You can use this file to test your program; however, make sure to install the program on

your computer and practice building circuits in Proteus.

Note: You might need to insert a small delay in your code after you read the pushbuttons to

avoid reading them more than one time during simulation. You may use the Simplest_Delay

subroutine or write a new one.

1

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
 To become familiar with HD44780 controller based LCDs and how to use them

 Knowing the various modes of operation of the LCD (8-bit/4-bit interface, 2-lines/1-line, CG-ROM).

 Distinguishing between the commands for the instruction register and data register.

 Stressing software and hardware co-design techniques by using the Proteus IDE package to

simulate the LCD.

Written by Eng. Ashraf Suyyagh and Eng. Enas Jaara – Revised by Prof. Iyad Jafar

4
Experiment 4: LCD

2

Introduction

A Liquid Crystal Displays (LCD) is a thin, flat display device made up of any number of color or
monochrome pixels arrayed in front of a light source or reflector. It is often utilized in battery-powered
electronic devices because it uses very small amounts of electric power. LCDs have the ability to display
numbers, letters, words and a variety of symbols. Figure 1 shows a typical LCD module. This experiment
teaches you about LCDs which are based upon the Hitachi HD44780 controller chipset.

LCDs come in different shapes and sizes in terms of number of characters and lines. Typical LCDs may have
8, 16, 20, 24, 32, and 40 display characters that are arranged in 1, 2 or 4 lines. However, all regardless of
the external shape of the LCD, they are internally built as a 40x2 format as shown in Figure 2. Each
of the small rectangles can be used to display some character as we will see later. The numbers shown in
the small rectangles are the corresponding RAM hexadecimal addresses that you need to write to in order
to write to that character. Figure 3 shows the relation between the character position and its RAM address
in the HD44780 controller based LCDs.

Figure 1: A typical LCD module.

00 01 02 03 04 05 06 07 08 09 0A 0B

40 41 42 43 44 45 46 47 48 49 4A 4B

0C 0D 0E 0F

4C 4D 4E 4F

16 Characters x 2 Lines (TLCM1621 or LM016L)

00 01 02 03 04 05 06 07 08 09 40 41 42 43 44 45 46 47 48 49

20 Characters 1 x Line (TLCM2011)

00 01 02 03 04 05 06 07 08 09 0A 0B

40 41 42 43 44 45 46 47 48 49 4A 4B

0C 0D 0E 0F

4C 4D 4E 4F

20 Characters x 2 Lines (LM032L)

10 11 12 13

50 51 52 53

00 01 02 03 04 05 06 07 08 09 0A 0B

40 41 42 43 44 45 46 47 48 49 4A 4B

0C 0D 0E 0F

4C 4D 4E 4F

16 Characters x 4 Lines (SMC1640A or LM041L)

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

Figure 2: Different LCD modules shapes and sizes.

Display Position 1 2 3 4 5 6 … 39 40

(Decimal)

RAM Address 00 01 02 03 05 06 … 26 27

(HEX) 40 41 42 43 45 46 … 66 67

Figure 3: Display address assignments for HD44780 controller based LCDs.

3

LCD Pin Out

Most LCD modules conform to a standard interface specification. A 16-pin access is provided with eight
data lines, three control lines, three power lines and two additional pins (L+ and L-) that are typically used
for backlight control purposes. Figure 4 shows the pinout of a 16-pin LCD and their description. Note that,
some LCDs are 14-pin and don’t have the L+ and L- pins.

Figure 4: 16-Pin LCD pinout and description.

Note: The LCD in Figure 4 might differ from the actual LCD module. The order can be from left to right or
vice versa; therefore, you should pay attention. Pin 1 is marked to avoid confusion (printed on one of the
pins).

Powering the LCD

Powering up the LCD requires connecting three lines: one for the positive power VDD or VCC (usually +5V),
one for negative power (or ground) Vss. The Vee pin is usually connected to a potentiometer which is used
to vary the contrast of the LCD. In this experiment, we will connect this pin to ground. As you can see from
Figure 4, the LCD connects to the microcontroller through three control lines: RS, RW and E, and through
eight data lines D0 through D7.

When powered up, the LCD display shows a series of dark squares. These cells are actually in their off state.
When power is applied, the LCD is reset; therefore, we should issue a command to set it on. Moreover, you
should issue some commands which configure the LCD. (See the table which lists all possible
configurations below in the code and the explanation to each field)

Interfacing LCD to PIC

Figure 5 shows an example of interfacing a 14-pin LCD to the PIC16F877A microcontroller. The data pins
are connected to PORTD, RA1 is connected to RS, RA2 is connected to R/W and RA3 is connected to E. Of
course, you can use different pin assignment to interface the LCD. Note: in this experiment, we will be only
writing to the LCD, so the R/W input is fixed to 0. Reading from the LCD is left to the students as exercise.

Communicating with the LCD

Using an LCD is a simple procedure once you learn it. Simply, you will place a value on the LCD lines D0-D7.

This value might be an ASCII value (character to be displayed), or another hexadecimal value

corresponding to a certain command. So, how will the LCD differentiate if this value on D0-D7 is

corresponding to data or command?

4

Figure 5: A typical interfacing between a PIC16F877A and an LCD module

For this purpose, the Register Select (RS) input is used. When this input is set to 1 and the Enable (E)

input transitions from high to low, the LCD interprets the value on D0-D7 as data. On the other hand,

when RS is 0 and E transitions from high to low, the LCD considers the value on the data pins as a

command. Figure 6 shows this simple operation. To implement the operation of the operations shown in

Figure 6 in software, we will use two subroutines: send_char and send_cmd.

Figure 6: Necessary control signals for Data/Commands

The send_char subroutine is supposed to perform the following operations to send the data (character) to

the LCD:

1. Output the data to D0-D7 lines. It is assumed that the data is in W and the data pins are connected

to PORTD.

2. Set Register Select (RS) to 1 to tell the LCD that we are outputting data. RS is connected to RA1, so

RA1 should be set to 1.

3. Generate a falling edge on the Enable (E) input to trigger the LCD to read the data pins. The E input

is connected to RA3. So, RA3 is set 1 for some time then set to 0 after some delay.

4. Generate a delay to give LCD the time needed to display the character.

Accordingly, the code for this subroutine is as follows:

send_char
movwf PORTD
bsf PORTA, 1
bsf PORTA, 3
nop
bcf PORTA, 3
bcf PORTA, 2
call delay
return

5

Similarly, the send_cmd subroutine is supposed to perform the following operations to send a command to

the LCD:

1. Output the command to D0-D7 lines. It is assumed that the data is in W and the data pins are

connected to PORTD.

2. Set Register Select (RS) to 0 to tell the LCD that we are outputting data. RS is connected to RA1, so

RA1 should be set to 0.

3. Generate a falling edge on the Enable (E) input to trigger the LCD to read the data pins. The E input

is connected to RA3. So, RA3 is set 1 for some time then set to 0 after some delay.

4. Generate a delay to give LCD the time needed to execute the command.

Accordingly, the code for this subroutine is as follows:

send_cmd
movwf PORTD
bsf PORTA, 0 ; the only difference from the send_char subroutine
bsf PORTA, 3
nop
bcf PORTA, 3
bcf PORTA, 2
call delay
return

Note that the only difference between the two subroutines is in the highlighted instruction that controls
the value of the RS input.

 Displaying Characters on the LCD

All English letters and numbers as well as special characters, Japanese and Greek letters are built in the

LCD module in such a way that it conforms to the ASCII standard. In order to display a character, you

only need to send its ASCII code to the LCD which it uses to display the character. To display a character on

the LCD, simply move the ASCII character to the working register (for this experiment) then call send_char

subroutine.

Figure 7 shows the character map for the LCD that we are using in this experiment. Notice that from

column 1 to D, the character resolution is 5 pixels wide x 7 pixels high (5x7) (column 0 is a special case, it

is 5x8, but considered as 5x7, more on this later). On the other hand, the character resolution of

columns E and F is 5 pixels wide x 10 pixels high (5x10). We should change the resolution if we are to use

characters from different resolution columns. This can be done using a command discussed later.

Sending Commands to the LCD

There are many commands that you need to be aware of in order to control the LCD. The list, format, and

options of these commands is shown in Figure 8. All the commands are 8-bit. To issue any of these

commands, we determine the values of its parameter(s) and then issue the send_cmd command. In the

following, we will discuss these commands in details.

Clear Display Command

Moving the value 01 to the working register followed by call send_cmd will clear the LCD display. However,

the cursor will remain at its last position, so, any future character writes will start from the last location. To

reset the cursor position, use the Display and Cursor Home command.

6

Figure 7: LCD character map.

Figure 8: LCD command control codes.

Display and Cursor Home Command

Resets cursor location to position 00 of the LCD screen (Figure 3). Future writes will start at the first

location of the first line.

Character Entry Mode Command

This command has two parameters 1/D and S:

 1/D: By default, the cursor is automatically set to move from location 00 to 01 and so on

(Increment mode). Suppose now that you are to write from right to left (as in the Arabic language),

then, you have to set the cursor to the Decrement mode, i.e. the D1 bit in the command should be 0.

 S: Accompanies the D/C parameter that is explained later.

7

Display On/OFF and Cursor Command

This command has three parameters:
 D: Turns on the display (when you see the black dots on the LCD, it means that it is POWERED on,

but not yet ready to operate). In other words, this command activates the LCD in order to be ready

to use.

 U: This command displays the cursor in the form of a horizontal line at the bottom of the character

when its value 1 and turns the cursor off when it is 0.

 B: If the underline cursor option is enabled, this will blink the cursor if high.

Display/Cursor Shift Command

All LCDs based on the HD44780 format - whatever their actual physical size is - are internally built to be

40 characters x 2 lines with the upper row having the display addresses 0-27H (40 Characters) and the

lower row from 40H -67H (40 characters).

Now, suppose you bought an LCD with the physical size of 20 char. x 2 lines. When you start writing to the

LCD and the cursor reaches locations 14H, 15H, 16H, … , you will not see them! BUT, don’t worry, they are

not lost. They were written in their respective locations but you could not see them because your bought

LCD has 20 visible Characters wide from the outside and 40 from the inside. All you have to do is shift the

display. To do that, use the Display/Cursor Shift command as follows:

1. Determine the direction of the shift using the (R/L) bit. This bit controls the direction for shift

(Right or Left).

2. Specify the value of the D/C bit in the command. If this bit is 0, the display is not shifted and the

cursor moves one position to right or left according to R/L bit. If this bit is 0, the display is shifted

to right or left to show the hidden characters. Note that you need issue this command multiple

times in order to shift the display by multiple locations!

Function Set

This command controls different features of the LCD and it has three parameters:

 8/4: this parameter specifies whether the LCD is receiving data as eight bits or four bits. In 8-bit

mode, the data is sent as 8 bit on D0-D7 lines. When 4-bit is used, the data is sent on D4-D7 lines

in two stages. The 4-bit is useful when interfacing the LCD to save output pins of the

microcontroller.

 2/1: this parameter specifies the line mode. When it is set to 1, then you can use both lines on the

LCD. Otherwise, you can use the upper line only.

 10/7: this parameter control height of the displayed character, i.e. the Dot format. The LCD

supports 5x7 or 5x10 format such that:

o 5x7 format (Default) is used whenever you use the characters found in columns 1 to D in

the character map shown in Figure 7.

o 5x7 format is also used whenever you use the built in characters in CG-RAM (EVEN

THOUGH THE CG-RAM CHARACTERs ARE 5X8!!!)

o 5x10 format is only used when displaying the characters found in columns E and F in the

character map in Figure 7.

Set Display Address Command

This command allows you to move the cursor to whichever location you want. The syntax of the command

is 1AAAAAAA. The A’s in the command are used to specify the address of the character position on the

display. For example, suppose you want to start writing in the middle of 20x2 display (visible width of the

LCD screen is 20), then, from Figure 2 you will observe that location 0AH is approximately in the middle, so

8

you replace the A’s with 0AH and the command becomes (10001010)2 or 8 AH. Another example is when

you want to start writing starting at the second line, which is location 40H, then, then the you should issue

the command is (11000000)2 or C0H. With the command in hand, you can put it in W and send it to the LCD

and calling the send_cmd subroutine.

Example

The following code is an example of initializing the LCD and using it to display the 26 English characters.

Note the initialization of the LCD in the Initial subroutine. After initialization, the program starts by loading

letter A in the working register and sending it to the LCD. Afterwards, it loops through the other characters

by adding 1 to the tempChar variable to move to the next English character. This operation is performed in

main program in the CharacterDisplay loop. Once all characters are sent to the LCD, you will see the first

20 characters only since the display is 20x2. To see the remaining characters, you need to shift the screen

continuously. This is done by issuing the shift display command infinitely in the MainLoop loop in the

main program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

;***
; EXAMPLE CODE 1
;***
; This code displays on the upper row of the LCD the 26 English letters in alphabetical order
; The code starts with LCD initialization commands such as clearing the LCD, setting modes and
; display shifting.
;
; Outputs:
; LCD Control:
; RA1: RS (Register Select)
; RA3: E (LCD Enable)
; LCD Data:
; PORTD 0-7 to LCD DATA 0-7 for sending commands/characters
; Notes:
; The RW pin (Read/Write) - of the LCD - is connected to RA2
; The BL pin (Back Light) – of the LCD – is connected to potentiometer
;***
 include "p16f877A.inc"
;***
 cblock 0x20
 tempChar ;holds the character to be displayed
 charCount ;holds the number of the English alphabet
 lsd ;lsd and msd are used in delay loop calculation
 msd
 endc
;***
; Start of executable code
 org 0x000
 goto Initial
;***
; Interrupt vector
INT_SVC org 0x0004
 goto INT_SVC
;***
; Initial Subroutine
; INPUT: NONE
; OUTPUT: NONE

9

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

; RESULT: Configure I/O ports (PORTD and PORTA as output, PORTA as digital)
; Configure LCD to work in 8-bit mode, with two lines of display and 5x7 dot format.
; Set the cursor to the home location (location 00), set the cursor to the visible state
; with no blinking
;***
Initial
 Banksel TRISA ;PORTD and PORTA as outputs
 Clrf TRISA
 Clrf TRISD

 Banksel ADCON1 ; configure PORTA as digital output

 Movlw 07

 mowf ADCON1
 Banksel PORTA
 Clrf PORTA
 Clrf PORTD
 movlw d'26'
 Movwf charCount ; initialize charCount with 26 Number of Characters in the English language

 Movlw 0x38 ; 8-bit mode, 2-line display, 5x7 dot format

 Call send_cmd
 Movlw 0x0e ; Display on, Cursor Underline on, Blink off
 Call send_cmd
 Movlw 0x02 ; Display and cursor home
 Call send_cmd
 Movlw 0x01 ; clear display
 Call send_cmd
;***
; Main Routine
;**
Main
 Movlw 'A'
 Movwf tempChar
CharacterDisplay ; Generate and display all 26 English Letters
 Call send_char
 Movf tempChar, w ; ‘A’ has the ASCII code of 65 decimal (0x41), by

Addlw 1 ; adding 1 to it we have 66, which is B. Therefore, by
 movwf tempChar ; continuously adding 1 to tempChar we are cycling
 movf tempChar , w ; through the ASCII table (here: alphabets)
 decfsz charCount
 goto CharacterDisplay
Mainloop
 Movlw 0x1c ; This command shifts the display to the right once
 Call send_cmd
 Call delay
 Goto Mainloop ; This loop makes the character rotate continuously
;**
send_cmd
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bcf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return

10

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

107

109

110

111

112

113

114

115

116

;**
send_char
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bsf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
delay
 movlw 0x80
 movwf msd
 clrf lsd
loop2
 decfsz lsd,f
 goto loop2
 decfsz msd,f
endLcd
 goto loop2
 return
;**
 End

Generating and Storing Custom Characters Using the CGRAM

The character map of the LCD that is shown in Figure 7 contains the English and Japanese characters,

numbers, symbols and special characters. Now, suppose you want to display a custom character that is not

shown in the table such as an Arabic letter, is that possible?

If you check the character map in Figure 7, you will see that the locations under column 0 are labeled with

CG(1) to CG(8). These locations are reserved to store custom characters that a user may wish to use, such

as the Arabic characters. Notice that despite that there are 16 locations under column 0, you can only use

the first 8 locations as the remaining are mirrors of the first.

Given these locations, how can we generate the characters and store them?

The first step is to draw the character. This is actually a fun thing to do. Simply, draw a 5x8 grid as shown

in Figure 9(a) and then start drawing your character inside it by shading the cells. Figure 9(b) shows and

example of drawing a stickman character inside the grid. Next, add three columns to the gird and replace

put 1 in the shaded squares and 0 in empty squares as shown in Figure 9(c). Each of the rows in the 8x8

grid is a byte that is to be stored in the LCD memory. The hexadecimal value of each row is shown in

Figure 9(d).

Once we have the values to be stored, the second step is to store it in one of the CG RAM locations. To do

so, we need to specify which of the CG locations we want to use. This is done using the Set CG-RAM

Address command. The syntax of this command is 01AAAAAA, where AAAAAA is the starting address of

the CG location.

11

(a)

B4 B3 B2 B1 B0

(b)

B7 B6 B5 B4 B3 B2 B1 B0
0 0 0 0 1 1 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0
0 0 0 1 1 1 1 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1

(c)

Value (H)

0x0E
0x11
0x0E
0x04
0x1F
0x04
0x0A
0x11

(d)

Figure 9: Steps to draw a stickman.

For example, if we want to store the character we generated previously in CG(0), we issue the command

01000000 or 0x40 to the LCD using the send_cmd subroutine. However, if we want to store it in CG(1), we

need to skip eight locations and issue the command 01001000 or 0x48. This is necessary as each character

is actually eight bytes, so the next character in the CG RAM starts after eight bytes. Figure 10 illustrates

this idea. Note how CG(2) starts at 0x48 and CG(7) starts at 0x78.

Figure 10: Storing the character in CG RAM.

The third step after specifying the CG RAM address is to send the 8 bytes that we obtained using the

send_char subroutine as shown in the code below.

Movlw 0x40 ; Here it is address 0x00 in Figure 8 which transforms into

 Call send_cmd ; command 0x40

 Movlw 0X0E ; Sending data that implements the Stick man

 Call send_char ; Notice the address where to store the character in CG-RAM

 Movlw 0X11 ; is a command thus use send_cmd, whereas the

 Call send_char ; data bits of the stickman are sent as Data

 Movlw 0X0E ; using send_char

 Call send_char

Movlw 0X04

 Call send_char

 Movlw 0X1F

 Call send_char

 Movlw 0X04

 Call send_char

 Movlw 0X0A

 Call send_char

 Movlw 0X11

 Call send_char

12

Once the character is stored in the CG RAM, we can display it on the LCD by simply calling the send_char
subroutine after placing the address of the CG character in the working register.

The following example shows how to store two stickman characters and display them on the LCD in
animated fashion as if the stickman is moving. There are two subroutines to store the two characters in
the CG RAM; DrawStick1 and DrawStick2. Once the characters are stored, the program continuously shows
them at the same position on the LCD in the Main loop. Note how the LCD has to be cleared after storing
the characters in the CG RAM. Also, note how we send the command 0x02 after displaying each character
in order to move the cursor to the first position.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

;**
**
; EXAMPLE CODE 2
;**
**
; This code stores two shapes of a stickman, one in location 00 (of Figure 8), and another at location
; 01. The first stickman is written on the leftmost location of the upper line, the second stick man
; shape is also written above the first one, then the first stick man is rewritten on the same location
; that is display: first stickman shape  second stickman shape  first stickman shape and so on ..
; thus the stickman will appear as if it is moving! 
;
; Outputs:
; LCD Control:
; RA1: RS (Register Select)
; RA3: E (LCD Enable)
; LCD Data:
; PORTD 0-7 to LCD DATA 0-7 for sending commands/characters
; Notes:
; The RW pin (Read/Write) - of the LCD - is connected to RA2
; The BL pin (Back Light) – of the LCD – is connected potentiometer
;**
**
 include "p16f877A.inc"
;**
**
 cblock 0x20
 lsd ;lsd and msd are used in delay loop calculation
 msd
 endc
;**
**
; Start of executable code
 org 0x000
 goto Initial
;**
**
; Interrupt vector
INT_SVC org 0x0004
 goto INT_SVC
;**
**
; Initial Routine
; INPUT: NONE
; OUTPUT: NONE

13

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

; RESULT: Configure I/O ports (PORTD and PORTA as output, PORTA as digital)
; Configure LCD to work in 8-bit mode, with two lines of display and 5x7 dot format.
; Set the cursor to the home location (location 00), set the cursor to the visible state
; with no blinking
;**
**
Initial
 Banksel TRISA ;PORTA and PORTD as outputs
 Clrf TRISA
 Clrf TRISD

 Banksel ADCON1 ;PORTA as digital output

 movlw 07

 mowf ADCON1
 Banksel PORTA
 Clrf PORTA
 Clrf PORTD
 Movlw 0x38 ;8-bit mode, 2-line display, 5x7 dot format
 Call send_cmd
 Movlw 0x0e ;Display on, Cursor Underline on, Blink off
 Call send_cmd
 Movlw 0x02 ;Display and cursor home
 Call send_cmd
 Movlw 0x01 ;clear display
 Call send_cmd
 Call DrawStick1 ;The subroutines draw and store the Stick man inside the
 Call DrawStick2 ;CG-RAM. This DOES NOT mean that the character is
 ;displayed on the LCD, it was only stored inside the CG-
RAM
 ;of the LCD.
 Movlw 0x01 ;the datasheet says you have to clear display command
 Call send_cmd ;storing the characters or the code will not work

;**
**
; Main Routine
;**
**
Main
 Movlw 0x00 ;Display character stored in location 00 (Figure 8), which in
 Call send_char ;this case is our first stickman in CG-RAM
 Movlw 0x02 ;Cursor Home Command
 Call send_cmd
 Movlw 0x01 ;Display character stored in location 00 (Figure 8), which in
 Call send_char ;this case is our first stickman in CG-RAM
 Movlw 0x02 ;Cursor Home Command
 Call send_cmd
 Goto Main ; This loop makes the character rotate continuously
;**
**
send_cmd
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bcf PORTA, 1
 bsf PORTA, 3
 nop

14

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

145

146

147

148

149

150

151

 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
**
send_char
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bsf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
**
delay
 movlw 0x80
 movwf msd
 clrf lsd
loop2
 decfsz lsd,f
 goto loop2
 decfsz msd,f
endLcd
 goto loop2
 return
;**
**
DrawStick1 Setting the CGRAM address at which we draw the stick
man
 Movlw 0x40 ; Here it is address 0x00 in Figure 8 which transforms
 Call send_cmd ; into command 0x40
 Movlw 0X0E ;Sending data that implements the Stick man
 Call send_char
 Movlw 0X11
 Call send_char
 Movlw 0X0E
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X1F
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X11
 Call send_char
 Return
;**
**
DrawStick2 ;Setting the CGRAM address at which we draw the stick

15

152

153

154

155

man
 Movlw 0x48 ;Here it is address 0x01 in Figure 8 which transforms
 Call send_cmd ; into command 0x48
 Movlw 0X0E ;Sending data that implements the Stick man
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X15
 Call send_char
 Movlw 0X0E
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X0A
 Call send_char
 Return
;**
**
 End

1

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Name:

Student ID:

Section (Day/Time):

LCD

COMPUTER NAME:

Labsheet
4

2

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet 4: LCD

Name: Student ID:

Section:

(Pre-lab) Part 1: Code Analysis and Understanding:

Answer the following questions regarding Code1:LDC1.asm of the experiment.

1. What changes to the instruction at line 57 are necessary in order for the cursor to be blinking?

2. What change(s) would you make to the code in order for it to start displaying the characters at

approximately the middle of the visible screen (i.e. at address 6)

(Pre-lab) Part 2: Suppose that you will store your Arabic characters at CG RAM Locations 0,

Location 1, Location 2 and location 3. Complete the modified main subroutine down with the

appropriate values in the Movlw instructions.

Main
 Movlw ___________ ;Display character stored in location 00 which in
 Call send_char ;this case is your first charcter in CG-RAM
 Movlw __________
 Call send_char
 Movlw __________
 Call send_char
 Movlw __________
 Call send_char
 Goto Main ; This loop makes the character rotate continuously

(Pre-lab) Part 3: On the grid given below, shade the squares required to generate the first

letter of your name in Arabic. If the first letter of your name is (أ), generate the character for

the second letter in your name. Then, write the instructions needed to store this character in

CG(1).

3

; Code to store the first letter of your name in Arabic

Draw your
character

below

 Replace each shaded cell with
one and not shaded ones with

zero.

Data in

Hex

B4 B3 B2 B1 B0



B7 B6 B5 B4 B3 B2 B1 B0
 0 0 0 0x

 0 0 0 0x

 0 0 0 0x
 0 0 0 0x
 0 0 0 0x

 0 0 0 0x

 0 0 0 0x

 0 0 0 0x

4

Part 3: Code Modification

In this part, you are required to modify the code in LCD2 - Animating Stickman.asm to display the first

Arabic letter of your name in a zigzag fashion as shown in the figure below. When the last position is

reached on the second row, the screen is cleared and the operation is repeated. You can use the

Embedded_Ex4 Proteus file to test your code. Assume that you are using 16x2 display.

↓

↓

↓

Hints:

1. You will need to use the Set Display Address command to select the display location. Check

Figure 2 in the tutorial to know the addresses of the locations to be used.

2. For proper display of the pattern, it is advised to turn off the cursor when you initialize the

LCD in the Init subroutine.

3. To reduce the program size, you may write a lookup table that stores the display addresses

and call this table in a loop.

Ask your engineer to check the run.

1

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
The main objectives of this experiment are to familiarize you with:

 Writing PIC programs in C

 Setting up MPLAB IDE projects to use the HI-TECH C compiler

 Becoming familiar with HI-TECH C primitives, built-in function in use with 10/12/16 MCU

Family

Prepared by Eng. Enas Ja’ra – Revised by Prof. Iyad Jafar

5

Experiment 5: Using HI-TECH C

Compiler in MPLAB

2

Introduction

So far in this lab course, PIC assembly programming has been introduced; however, in practice, most of

the industrial and control codes are written in High Level Languages (abbreviated as HLL). The most

common of which is the C programming language. The use of high level languages is preferred for large

and very complex programs due to their simplicity which allows for faster program development, easier

debugging, and for easier future code maintainability. This will provide developers with shorter time to

market advantages in a world where competition is at its prime to introduce new commercial products.

 On the other hand, HLLs assembled codes are often longer (due to inefficient compilers, aggressive and

advanced optimizing compilers are often used to yield better results). Longer codes have the

disadvantage of higher program memory requirement. This is crucial as most microcontrollers have

limited memory space. Additionally, longer codes imply longer time to execute. However, expert

assembly programmers can rewrite certain pieces of code in a very optimized and short fashion such

that they execute faster. This is very important especially when real time applications are concerned.

This direct use of assembly language requires that the programmer knows the problem in hand very

well and that one is experienced in both software and target microcontroller hardware limitations.

Hence, it is common for programmers combine C and Assembly language in the same developed source

code.

There are many C compilers available commercially, such as mikroC, CCS and HI-TECH. This experiment

introduces the “free” Lite version C compiler from HI-TECH software bundled with MPLAB, in contrast

to the Pro versions of compilers commercially available from HI-TECH and others. The compiler and

assembler don’t use aggressive techniques and the resultant assembly codes are larger in size.

The HI-TECH C Compiler

In order to use the HI-TECH C compiler to write your PIC programs in C language, it is assumed that you

have already installed it during the installation of MPLAB. Also, when write your program in high-level

C, you need to save the source code in a file with .C extension.

Given that, you can create a project in MPLAB following the same steps that you learned in Experiment

0. However, in Step Two, you need to select the HIGH-TECH Universal ToolSuite as the Active ToolSuite

in the dialog box as shown in Figure 1. Click Next.

Figure 1: Selecting the HIGH-TECH ToolSuite.

3

Next, give a name to your project and specify its location in Step Three as shown in Figure 2. Click next

to move to Step Four where you can add the C file to your project as shown in Figure 3. Click next. If

you followed the steps correctly, you should see the project window with selected C file under the

Source File menu as shown in Figure 4. If you did not save your source file with .C extension, it will

appear under the Other Files menu as shown in Figure 5. To correct that, save the file in .C extension

and the right click on the Source File menu and select Add Files to select the add the new file.

Figure 2: Step Three in creating the project.

Figure 3: Step Four in creating the project.

Figure 4: Project window. (CORRECT)

Figure 5: Project window with incorrect file

extension. (WRONG)

Building/Compiling C Programs in MPLAB

In this experiment, we will assume that you have prior knowledge in writing general C/C++ programs.

In this section, we will show how to write and simulate a general C program in MPLAB IDE.

Now, double-click on the C file that you have added to your project and write the following code.

#include <htc.h>
void main(void) // every C program you write needs a function called main.
{

}

4

This is a simple C program that has the main function. As you know, every C program should have the

main function. Also, notice how we have included the htc.h file, which is essential for the HI-TECH

compiler to work.

After writing this simple program, we should build the code to ensure that MPLAB IDE and HI-TECH C

are properly installed. Select Build from the Project menu, or choose any of MPLAB IDE’s shortcuts to

build the project. These shortcuts are circled in Figure 6.

Figure 6: Shortcuts for building C-based project using HI-TECH compiler.

Once you build the project, you should see the output shown in Figure 7. The compiler has produced

memory summary and there is no message indicating that the build failed, so we have successfully

compiled the project. As we had with ASM files, if there are errors they will be printed in Build tab of

this window. You can double-click each error message and MPLAB IDE will show you the

offending line of code, where possible. If you do get errors, check that the program is as it is written in

this document.

Figure 7: Result of compiling the project.

Remember that BUILD SUCCEED DOES NOT MEAN THAT YOUR PROGRAM IS CORRECT! IT SIMPLY

MEANS THAT THERE ARE NO SYNTAX ERRORS FOUND, SO WATCH OUT FOR ANY LOGICAL ERRORS

YOU MIGHT MAKE.

5

Structure of C Program and Functions

When writing C programs, you need to remember the following general rules:

1. One-line comments start with 2 slashes: //

// This is a one-line comment

2. Multi-line comments line start with /* and end with */

/*

This is a comment.

This is another comment.

*/

3. At the end of each line with some instruction, a semi-colon (;) has to be placed.

a=a+3;

4. Parts of the program that belong together (functions, statements, etc.), are between { and

}.

void main(void) //Function

{

//Add code

}

In general, the ordered basic structure of the C program is as follows:

1. Libraries

Libraries such as htc.h, math.h and stdlib.h, are files that contain functions and constants which you

can use. In order to use these functions, you need to include the library that has this function in your

program. To do so, you write the statement #include <filename.h>. This statement should be placed

at the beginning of your code.

2. Global Variables

Global variables are those that you can use in the main function and other functions in your

program. Declaring the global variables should be done at the beginning of the code.

3. Function Prototypes

A C program has a main function and possibly other functions as well which a user may write after

the main function. In this case, and to avoid compilation errors, the user has to define these

functions before the main function. This is done by simply writing the function prototype before the

main program. The function prototype is the header of the function followed by a semicolon. You

can avoid using prototypes, although not preferred, by placing the entire function before the main

function.

4. Main Function

This is the function that is first called when the program execution is started. Every C program

must have a main function.

5. Functions Definition

Functions are the high-level representation of subroutines that you learned in assembly. The body

of the function contains a set of statements that can be executed from any place in your code and as

many times as needed. To define a function, you use the following syntax:

6

type identifier function name (type identifier identifier1, type identifier identifier2 ….)

{

 //The body of the function

 return identifier //only when return type is not void

}

The Type identifier of the function determines the type of the return value. It could be int, long, short,

char, void ….. etc. The same thing applies to the input variables (identifiers) that you place between the

parenthesis. Remember that a function may return one value, but can take as many inputs as you want.

Table 1 shows some examples on defining functions.

To call a function, you simply use its name in your program as shown in Table 1. Notice how

tesFunction2 requires using an output variable to store the result and how the parenthesis are still

needed when calling testFunction3.

Table 1: Examples on Defining Functions

Function Definition Comments How to Call the Function?

void testFunction1(int x, int y)

{

 int k;

 k = x;

 y = 2 + x;

}

The name of the function is

testFunction1. It accepts two integer

inputs; x and y, and returns no values.

We express this by setting the type of

the function as void.

testFunction1(4,129);

int testFunction2 (int x)

{

 return x*x;

}

The function name is testFunction2. It

has one integer input x and returns an

integer value that is x*x.

A = testFunction2(44);

void testFunction3 (void)

{

 //some code

}

The function name is testFunction3.

This function accepts no input and

returns nothing. Such function might

be used to do initialization, print

something on the screen, or it may

modify global variables.

testFunction3();

Example 1 below is an example on writing a C program and function calc().
 //Example Program 1

#include <htc.h> //Always include this library when using HI-TECH C compiler
//Declaring global variables

int a, b, c;
char temp;

//Defining function prototypes
int calc (int p);

//Main function
void main(void)
{

A = calc(3); //write main body code
}

//Functions definitions
int calc (int p)
{

p = p + 1; //write function body code
return p;

}

7

Variables in C Language

Variables can be classified into two main types depending on their scope:

 Global Variables
These variables can be accessed (i.e. known) by any function included in the program. They are

implemented by associating memory locations with variable names. They do not get recreated

if the function is recalled. In Example 1, a, b, c, and temp are GLOBAL VARIABLES.

 Local Variables
These variables only exist inside the specific function that creates them. They are not visible or

accessible by other functions and to the main program. Local variables don’t exist once the

function that created them is completed. They are recreated each time a function is executed or

called. In Example 1, the variable p is a LOCAL VARIABLE.

In C Language, variables may take different types. Table 2 lists the available data types supported in C.

Example 2 below shows an example of defining different types of variables.

Table 2: Data Types in C Language
Type Size in Bits Possible Values

bit 1 bit 0, 1
char 8 bits -128…127

unsigned char 8 bits 0…255
signed char 8 bits -128…127

int 16 bits -32k7…32k7
unsigned int 16 bits 0…65k5

signed int 16 bits -32k7…32k7
long int 32 bits -2G1…2G1

unsigned long int 32 bits 0…4G3
signed long int 32 bits -2G1…2G1

float 32 bits ± 10^(±38)
double 32 bits ± 10^(±38)

// Example Program 2
#include <htc.h>
char Ch;
unsigned int X;
signed int Y;
int Z, a, b, c; // Same as "signed int"
unsigned char Ch1;
bit S, T;

void main (void)
{

Ch = 'a';
X = -5;
Y = 0x25;
Z =-5;
Ch1='b';
T = 0;
S = 81; //S=1 When assigning a larger integral type to a bit variable,

//only the Least Significant bit is used.
 a = 15;

b = 0b00001111;
c = 0x0F;
// a, b, c will all have the same value which is 15

}

8

C Operators

C Language supports many types of arithmetic, logic and relational operators. These operations can be

applied to variables and constants. Table 3 lists the operators supported in C.

Table 3: C Operators

Type of Operation Operation Symbol

Arithmetic Addition +
Subtraction -

Multiplication *
Division /

Modulus (remainder after division) %
Increment by 1 x++
Decrement by 1 x--

Bit Bitwise NOT ~
Bitwise AND &
Bitwise OR |

Bitwise XOR ^
Shift to left <<

Shift to right >>
Relational Greater than >

Greater than or similar to >=
Less than <

Less than or similar to <=
Equal to ==

Not equal to !=

In your programs, you usually write expressions that mix between different types of operators. For

example, you may write A = 4*B – 15. In this case, which operation is performed first? Hence, it is

necessary to know how to evaluate the expression. This requires defining an order for evaluating

operations in the expression. We call this precedence. Table 4 shows the precedence of different

operators in the HI-TECH compiler, ordered from highest to lowest. In case two operators have the

same precedence, the evaluation is from left to right.

Table 4: Precedence of Operators

Operator Precedence

Parenthesis () Highest

* / %

+ -

>> <<

< > <= >=

== !=

&

^

| Lowest

Simulating C Programs in MPLAB

Let’s now try to simulate a simple C program in MPLAB. The program is given below and it can be found

in ExampleProgram3.asm file. The program calculates the Fibonacci Series by recursively calling Fib()

function. The series is obtained by starting with two values; 0 and 1, and then the following values are

obtained by adding the previous two values.

9

To simulate this program in MPLAB:

1. Start a new MPLAB session, create a new project and add the file ExampleProgram3.c to your

project.

2. Build the project.

3. Select Debugger  Select Tool MPLAB SIM. A set of shortcuts appear on the toolbar as

shown below.

4. Go to View Menu  Watch. Add the variables F1 through F6 to inspect during simulation.

5. Press the “Step into” button one at a time and check the Watch window each time an

instruction executes.

6. Keep pressing “Step into” until you all the six terms of the series are generated.

7. Reset the simulation, do step 5 above but this time use “Step Over”, note the difference
8. Reset the simulation, do step 5 above, this time place a break point at the last instruction in

main, press run. Inspect the variables in watch window.

Note about simulating a code written in C in MPLAB

 Stepping into codes written in C is not as direct as one would imagine! Different compilers

translate the C code into assembly differently. A single line of code might be translated into

multiple assembly lines. For example, a simple assignment statement “X = 5”, where X has been

defined as integer will be translated into four assembly instructions.

Movlw 05
Movwf 0x70 //GPR address 0x70 chosen by compiler
Movlw 00
Movwf 0x71

Since X is an integer, it needs 2 bytes in memory (16 bits as specified in the Table 2), it need be
saved as 0x0005, so two instructions are needed to load the first byte into location 0x70 and
another two to move the rest of the number into location 0x71.

If a simple one statement instruction was assembled like this, imagine how would complex
statements are translated like for loops and if statements. Moreover, some compilers are more

// Example Program 3: Fibonacci series: 0, 1, 1, 2, 3, 5
#include <htc.h> // Library
unsigned int Fib (unsigned int Num1, unsigned int Num2); // Prototype
unsigned int F1, F2, F3, F4, F5, F6; // Global Variables

void main (void) // Main function
{

F1 = 0;
F2 = 1;
F3 = Fib (F1, F2);
F4 = Fib (F2, F3);
F5 = Fib (F3, F4);
F6 = Fib (F4, F5);

}
 unsigned int Fib (unsigned int Num1, unsigned int Num2) //Function
{

 return Num1 + Num2;
}

10

efficient than others, which give you optimized shorter assembly codes which might not be easy
to understand.

 Moreover, function placement spans through multiple pages in program memory, hence, the

code might not be placed in consecutive order into memory by the compiler; further overhead
instructions to switch between pages are common.

 In addition, the use of built-in library functions will further complicate stepping through

assembly codes line by line as these functions are often provided as a black box for the
developer to use with no interest in their details.

For this, it might be difficult for the inexperienced to understand the assembly code generated by
compilers, and stepping into assembly code one instruction at a time might be a headache. It is often
advised to place breakpoints at points of interest and run the program till it halts at the required
breakpoints and analyze the outputs in the watch window.

Control and Repetition Statements in C

 IF-ELSE Statements

 WHILE Loop Statement

 FOR Loop Statement

while (expression)

{

 statement 1;

 statement 2;

 .

 .

 statement n;

}

if (expression1)
{
 statement 1;
 .
 .
 statement n;
}
else
{
 statement 1;
 .
 .
 statement n;
}

for (expr1; expr2; expr3)

{

 statement 1;

 statement 2;

 .

 .

 statement n;

}

Example Code 5:

if (a==0) //If a is equal to 0
{

b++; // increase b and c by 1
c++;

}
else
{

b--; //decrease b and c by 1
c--;

}

Example Code 6:

while (a>=1) && (a <=10) //As long as 1<=a <= 10
{

b = b + 3;
c = a%b;

}

Example Code 7:

for (i = 0 ; i < 100 ; i++) //loop 100 times
{

B = B + i + A%i;
}

11

Writing C Programs for PIC

The preceding discussion introduced the C language in a broad concept. Now, we present an example on

writing C programs for the PIC microcontrollers. Actually, it is fairly simple where besides the user-

defined variables, the PIC registers are also used in the context of programs.

As you know, the operation of the microcontroller is completely controlled by registers. All
registers used in MPLAB HI-TECH have exact the same name as the name stated in the datasheet.
Registers values can be specified in different ways as shown in the following examples.

TRISB = 0b00000000; //TRISB is output
PORTC = 255; //All pins of PORTC are made high
PORTD = 0xFF; //All pins of PORTD are made high
PORTB = 170; //Pin B7 on, B6 off, B5 on, B4 off, etc.
TRISB = 0b11110010; //Pin RB7, RB6, RB5, RB4 and RB1 are input, other bits are

// outputs.
OPTION=0xD4 //PSA assigned to TMR0, Prescalar = 32, TMR0 clock source is

// the internal instruction cycle clock, External interrupt is on
// the rising “refer to datasheet”

.

To set or reset one single bit in a register (one of the 8 bits), the pin name is used and, the names of
the bits are also as specified and used in the datasheet. For example:

RB0 = 1 //Pin B0 on
RB7 = 0 //Pin B7 off

Example 8 below shows a complete C program that continuously flashes a LED connected to RD0 pin.

To simulate the Example 8, you can either select PORTD from the ADD SFR drop down menu or
choose PORTD bits from the ADD SYMBOL drop list, click on the + sign to expand and see the
individual bits. Place your break points on both Wait() instructions and run the code.

// Example Program 8: Periodically switch a LED connected to RD0 on and off
#include <htc.h>
// if the whole function is placed before the main function, there is no need for a prototype
void Wait()
{

 unsigned char i;
 for(i=0; i<100; i++)
 _delay(60000); //built in function .. more info next page

}

void main()
{
 //Initialize PORTD -> RD0 as Output

TRISD=0b11111110;
 //Now loop forever blinking the LED.

while(1)
{
 RD0 = 1; //LED on
 Wait();

 RD0 = 0; //LED off
 Wait();
}

}

12

Built-in Functions in C

The C standard libraries contain a standard collection of functions, such as string, math and
input/output routines. The declaration or definition for a function is found in the htc.h and other
libraries files which are to be included whenever necessary. Some of these functions are listed
below.

Delay Functions

_DELAY __DELAY_MS and __DELAY_US
Synopsis
#include <htc.h>
void _delay(unsigned long cycles);

Description
This is an inline function that is expanded by the
code generator. The sequence will consist of code
that delays for the number of cycles that is
specified as argument. The argument must be a
literal constant. An error will result if the delay
period requested is too large. For very large
delays, call this function multiple times.

//Example

#include <htc.h>

int A;

void main (void)

{

A = A | 0x7f;

_delay(10); // delay for 10 cycles

A = A & 0x85;

 }

Synopsis
__delay_ms(x) // request a delay in milliseconds
__delay_us(x) // request a delay in microseconds

Description
As it is often more convenient request a delay in
time-based terms rather than in cycle counts, the
macros __delay_ms(x) and __delay_us(x) are
provided. These macros simply wrap around
_delay(n) and convert the time based request
into instruction cycles based on the system
frequency.
These macros require the prior definition of
preprocessor symbol _XTAL_FREQ. This symbol
should be defined as the oscillator frequency (in
Hertz) used by the system.

//Example

#include <htc.h>

int A;

#define _XTAL_FREQ 4000000

void main (void)

{

A = A | 0x7f;

 __delay_ms(10); // delay for 10 ms

A = A & 0x85;

}

Arithmetic Functions

In addition to the htc.c library, other libraries such as Standard Library <stdlib.h> or C Math
Library <math.h> need be included in the project for making use of many useful built-in
functions such as ABS, POW, LOG, LOG10, RAND, MOD, DIV, CEIL, FLOOR, NOP, ROUND and SQRT.
Make sure you include the appropriate header files for each library before making use of its
functions or else build errors will be present.

13

ABS POW
Synopsis
#include <stdlib.h>
int abs (int j)

Description
The abs() function returns the absolute value of
the passed argument j.

Synopsis
#include <math.h>
double pow (double f, double p)

Description
The pow() function raises its first argument, f, to
the power p.

LOG and LOG10 RAND
Synopsis
#include <math.h>
double log (double f)
double log10 (double f)

Description
The log() function returns the natural logarithm
of f. The function log10() returns the
logarithm to base 10 of f.

Synopsis
#include <stdlib.h>
int rand (void)

Description
The rand() function is a pseudo-random number
generator. It returns an integer in the range 0 to
32767, which changes in a pseudo-random
fashion on each call.

Trigonometric functions

Note: The define directive

You can use the #define directive to give a meaningful name to a constant in your program. The

syntax is #define constantName Value.

Example: #define COUNT 1000

SIN COS
Synopsis
#include <math.h>
double sin (double f)

Description
This function returns the sine function of its
argument.it is very important to realize that C
uses radians, not degrees to perform these
calculations! If the angle is in degrees you must
first convert it to radians.

Synopsis
#include <math.h>
double cos (double f)

Description
This function yields the cosine of its argument,
which is an angle in radians. The cosine is
calculated by expansion of a polynomial series
approximation.

// Example:
#include <htc.h>
#include <math.h>
#include <stdio.h>
#define C 3.141592/180.0
double X, Y;
void main (void)
{

double i;
X=0;
Y=0;
for(i = 0 ; i <= 180.0 ; i += 10)
{X= sin(i*C);
Y= cos(i*C);

}
}

1

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Name:

Student ID:

Section (Day/Time):

Using HI-TECH C Compiler in MPLAB

COMPUTER NAME:

Labsheet

5

2

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet5: Using HI-TECH C Compiler in MPLAB

Name: Student ID:

Section:

(Pre-lab) Part 1: Code Analysis Skills

1) Create a new project in MPLAB IDE with the following steps:

a. Select the PIC16F877A as the device.

b. Select HI-TECH Universal ToolSuite as the Language Toolsuite.

c. Add the file labsheet5.c to your project

d. Build the project. There should be no errors.

2) Read and simulate the given C code and answer the questions which follow.

a. What is the size of the variables a and i in bits?

b. What will happen if you move (cut/paste) the “char a; “and place it in the initial function?

Why?

c. What does this operator mean “<< “which used in the second for loop “a=a<<1; “? What is

the instruction in PIC assembly language which performs the exact functionality?

d. What is the task of the __delay_ms(100) function ?

e. Rewrite the following C statement “if (a==00)”PIC assembly language. Assume a is a GPR.

3

Part 2: Code Writing Skills (1)

Given the circuit in the Labsheet_5 Proteus Circuit Proteus Part 2 project, it is required to write a

program to display the numbers 0 to 8 continuously on the 7-segment display. Your code should

have at least two functions: initial and main functions such that:

 The initial function is used to initialize all ports, SFRs and GPR’s used in the program and this

function is only executed once at the program startup.

 The main function contains all the functions which perform the tasks of the system.

 The nature of the code requires the program to run continuously, i.e. the program code will

loop through specific functions which implement the system task.

 Notice that the 7-segment display is common-anode and is connected to PORTD such that

segment a is connect to RD0, segment b is connected to RD1 … . The following table lists the

7-segment codes for numbers 0-6. Complete it with the codes of numbers 7 and 8 and use it

in your program.

7 Segment Display Number

0b11000000 0

0b11111001 1

0b10100100 2
0b10110000 3

0b10011001 4

0b10010010 5

0b10000010 6

0b 7

0b 8

Hints

 You need to define a variable to store the current number to be displayed. This variable is

incremented by 1 to go to the next number. Once it is 9, it should be cleared.

 The value of the variable is converted to 7-segment code and displayed on PORTD.

 You should put some delay between displaying successive numbers in order to see them.

 There should be an infinite loop in the program to repeat the operation.

Show the simulation in Proteus to the lab engineer and copy your code below.

4

Part 3: Code Writing Skills (2)

Modify the circuit in Labsheet_5 Proteus Circuit Proteus Part 2 project that you used in Part 2 by

adding a switch that is connected to RB0 using a pull-up resistor. Afterwards, modify the code you

wrote in Part 2 such that it checks if the switch is closed or opened. If it is open, the system counts

and displays the value as required; however, when it is closed, the system flashes all the segments

continuously.

Show the simulation in Proteus to the lab engineer and copy your code below.

1

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
The main objectives of this experiment are to familiarize you with:

 hardware timing modules provided by the PIC 16F877A. 
 the concept of 7 segment multiplexing.

Pre-lab 

You are required to review the following in order to be fully prepared for the experiment. Refer back to

both your text book and the Microchip PIC datasheets whenever you find it necessary.

 The operation of the Timer0 Module and the related OPTION_REG settings. 

 The Operation of Timer2 Module and its associated PR2 and T2CON registers.

 The External interrupt on RB0.

 Context saving and retrieval while using interrupts.

Prepared by Dr. Ashraf Suyyagh and Eng. Enas Ja’ra – Revised by Prof. Iyad Jafar

6
Experiment 6: Timers

2

1. Review of Timer0 Operation

Hardware timers are special components that are usually available in most microcontrollers. They can

be used for counting and timing purposes, which are very important and frequent operations in

embedded systems. As you learned in the course, the PIC16F877A microcontroller has three timers:

Timer0, Timer1 and Timer2. In this quick introduction, we will review the operation of Timer0. You are

required to read Appendix 1 in this experiment to understand the operation of Timer2.

Timer0 is an 8-bit counter/timer. The block diagram of this timer is shown in Figure 1. As you can see,

at the heart of this block is the 8-bit counter TMR0 (address 0x01) which is used to store the count

value. The value in this register is incremented by one of two clock sources. The first source is the

signal that is observed on pin RA4/T0CKI. When this source is selected, the value can be incremented

on every rising or falling edge that is received on RA4/T0CKI. In this case, Timer0 is operating in the

counter mode and it is basically counting the edges. These edges can be the output of a switch or sensor.

The second source that can be used to trigger the increment of the count value in the TMR0 register is

internal clock (Fosc/4). When this source is selected, Timer0 is operating in timer mode. In this mode,

the value in TMR0 register is incremented every one cycle of Fosc/4. Whenever the value of TMR0

register reaches 255, i.e. the maximum value for an 8-bit register, the register is cleared and the Timer0

Interrupt Flag (T0IF) in the INTCON register is set. This event basically marks an overflow of Timer0. In

this experiment, we focus on using Timer0 in the timer mode.

Figure 1. Timer0 block diagram.

So, how can we use Timer0 to measure time? As mentioned earlier, the TMR0 register is incremented

on every cycle of Fosc/4. Accordingly, we can calculate the elapsed time using

𝑇𝑖𝑚𝑒 = 𝑁 ×
4

𝐹𝑜𝑠𝑐
 (1)

where N represents the number of times Timer0 was incremented. Assuming that Timer0 starts from

zero and knowing that TMR0 is 8-bit, then the maximum time that can be measured before the timer

overflows is 28 ×
4

𝐹𝑜𝑠𝑐
 or

1024

𝐹𝑜𝑠𝑐
. What if we want longer time?

One solution is to reduce Fosc; however, this might not be possible. Another solution is to use the

Programmable Prescaler block that is shown in Figure 1. This block is basically a frequency divider

circuit that can be used to scale down Fosc/4, i.e. scaling up the period 4/Fosc, by a certain prescaler

value. In other words, this makes the clock observed by Timer0 slower. Accordingly, the time measured

by Timer0 can be calculated using

𝑇𝑖𝑚𝑒 = 𝑁 ×
4

𝐹𝑜𝑠𝑐
× 𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 (2)

3

In order to use the Timer0 block, we need to configure it using the OPTION_REG which has all the bits

needed related to Timer0 such as choosing the source of the clock and specifying whether the prescaler

hardware is used with Timer0 or not. Figure 2 shows the OPTION_REG.

Figure 2: The OPTION_REG register.

Let’s see how to configure and use Timer0 to generate a time delay of 0.5 second on PIC16F84A

microcontroller with Fosc of 12.8 KHz. The first thing to do is some calculations to figure out the

number of increments needed (N) and the preclear value; if it is needed. From Equation (2), we have

𝑇𝑖𝑚𝑒 = 𝑁 ×
4

𝐹𝑜𝑠𝑐
× 𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒

0.5 = 𝑁 ×
4

12.8 × 103
× 𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒

1600 = 𝑁 × 𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒

This leaves us with one equation with two unknowns: N and the prescaler value. Luckily, we can solve

this equation by trying different values of the prescaler value that are listed in the table in Figure 2. The

possible options that give an 8-bit integer value for N are given in the table below.

Prescaler N Note

1 1600

Value can’t be used since N is 255 maximum 2 800

4 400

8 200

Value can be used
16 100

32 50

64 25

128 12.5 Value has to be truncated since N is integer. Okay to use if the required delay does

not need to be accurate 256 6.25

Let’s pick the prescaler to be 16. This implies that N is 100. Remember that N is the number of

increments to be performed in order for Timer0 to overflow, i.e. it reaches 255; thus, the TMR0 register

has to be initialized to count from 256-N. Hence, TMR0 in our case should be initialized to 156. To use

the prescaler with Timer0, we need to clear the PSA bit to use the Prescaler hardware with Timer0,

store (011)2 in the PS2, PS1 and PS0 bits, and clear the T0CS bit in the OPTION_REG to select the

internal clock as Timer0 clock.

4

With these values in hand, we can now write a program to configure and use Timer0 to generate a 0.5s

delay as shown below. The program basically flashes an LED that is connected to RB1. The time

between flashing is done using the DELAY subroutine that uses Timer0. Every time the subroutine is

called, TMR0 is initialized to D'156' and the OPTION_REG is configured as required. Afterwards, the

subroutine enters the waiting loop L1 in which it checks T0IF. Try to compile this code and simulate it

using the circuit available in Timer0 Example Proteus Circuit.

This code can be written in C language as shown below. Try to analyze the code to get better

understanding on how to use C in writing programs.

5

2. The Stopwatch Example

In this section, we discuss an example of using Timer0 to design a simple stopwatch system. The system

uses a PIC16877A microcontroller running at 4 MHz and is connected through PORTC and PORTD to

two common-anode 7-segment displays to display the current count. The 7-segment display that is used

to show the most significant digit of the count is connected to PORTC while the other 7-segment is

connected to PORTD to show the least significant digit (In order to save the ports, you may have the two

displays share the same port and use 7-segment multiplexing technique that you learnt in class. This

technique is reviewed in Appendix 3). Additionally, a pushbutton START/STOP is connected to RB0 to

control the operation of the stopwatch. Figure 3 shows the schematic diagram of the system. It is

available in the Stopwatch Proteus Circuit file.

Figure 3: Stopwatch Proteus circuit.

The system operates as follows:

1. When the system starts, it displays 00 on the two displays and waits the user to press the

START/STOP button.

2. When the user presses the button, the system starts counting 00, 01, 02, … 59, 00, 01, 02 … such

that each increment takes one second. This process is repeated indefinitely until the user

presses the button again. Timer0 is to be used for timing.

3. When the user presses the button again, the system pauses counting. However, when he presses

it again, counting resumes. In other words, the system toggles between two states; counting and

pause, whenever the START/STOP button is pressed.

The first thing to do is to perform some calculations to figure out the configuration of Timer0 to count

for 1 second when FOSC is 4 MHz. Using Equation (2), we have

1 = 𝑁 ×
4

4 × 106
× 𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒

If you try different values for the prescaler, you will conclude that we can’t find a valid 8-bit value for N.

So, how to solve this without changing FOSC?

We can use what we call Software Postscaler technique. The idea is simple. Basically, we will allow

Timer0 to overflow certain number of times to generate the required one second time. Let’s call the

6

required number of times for Timer0 to overflow the software postscaler PS. Hence, Equation (2)

becomes

𝑇𝑖𝑚𝑒 = 𝑁 ×
4

𝐹𝑜𝑠𝑐
× 𝑃𝐻 × 𝑃𝑆 (3)

where PH a is the hardware prescaler that we discussed in the previous section. Accordingly, and the

equation becomes

1 = 𝑁 ×
4

4 × 106
× 𝑃𝐻 × 𝑃𝑆

or

1000000 = 𝑁 × 𝑃𝐻 × 𝑃𝑆

Now, we need to find the values for N, PH and PS under the constraint that N and PS are 8-bit integers,

and PH is one of the allowed values for the hardware prescaler as shown in Figure 2. Trying different

values, we find that N = 250, PH = 32 and PS = 125 gives the required time. In other words, we need to

initialize TMR0 with (256-250=6), use a prescaler of 32 (PS2:PS0 = 1002) and count 125 overflow

instances of Timer0. The numbers imply that Timer0 will overflow every 250×4×32/4×106 which is 8

ms. Counting 125 overflow instances gives the required time of 1 second.

Next, we need to design the flow of our program. In our design, we will assume the following:

1. We will use the External Interrupt on RB0 to detect when the user presses the pushbutton. So,

we will enable this interrupt source in the INTCON register.

2. We will define the variable START_STOP to store whether the system is counting or stopped.

This variable stores 0x00 when the system is stopped and 0xFF when the system is counting.

This variable is complemented inside the ISR whenever the START/STOP pushbutton is pressed

to change to state of the system.

3. We will use Timer0 Overflow Interrupt to know when it overflows. So, we need to enable this

interrupt in the INTCON register.

4. We will define the variable SEC_CALC to count whether Timer0 has overflown 125 times. This

variable is incremented by 1 in the interrupt service routine ISR whenever Timer0 overflows

until it reaches 125. At this moment it should be cleared.

5. We will use two variables LOW_DIGIT and HIGH_DIGIT to store the two digits to be displayed on

the two 7-segment displays. The value of LOW_DIGIT is incremented when SEC_CALC is 125 and

is cleared when it reaches 9. The HIGH_DIGIT is incremented when LOW_DIGIT is 9 and it is

cleared when its value is 6. This will perform the counting operation from 0 to 59 as required.

6. The LOW_DIGIT and HIGH_DIGIT values are converted to 7-segment codes as we did in

Experiment 3.

7. The main program will be responsible for initialization and displaying the count value.

Afterwards, it enters an endless loop to update the displays and wait for interrupts. All the

operations on the variables and displaying the value on the displays are implemented inside the

ISR by calling other subroutines.

The flowchart in Figure 4 shows the operation of the main program and the ISR. Study this flowchart

carefully before looking at code that is presented next. The branching to and from the ISR is indicated

by the dashed arrows.

7

Start

Initialization
(PORTS, Enable Timer0 and External

Interrupts, Configure Timer0, Clear Variables)

Interrupt
Detected?

No

Context Saving

Is External
Interrupt?

Is Timer0
Interrupt?

Yes

Complement
SEC_CALC

No

Y

Reinitialize Timer0

Yes

Increment
SEC_CALC

Is SEC_CALC
125?

Is START_STOP
 0xFF?

YesClear SEC_CALC

Is LOW_DIGIT 9?

Clear LOW_DIGIT

Increment HIGH_DIGIT

Increment
LOW_DIGIT

Yes

 No

Yes

Is HIGH_DIGIT 6?

Clear HIGH_DIGIT Context Retrieval

Update Display

Yes

No

No

No

Exit ISR

No

Figure 4: Flowchart of the system.

The assembly code that implements this flowchart is given below. Note the following while studying the

code:

1. We check the source of interrupt at the beginning of the subroutine since we are using two

interrupt sources; Timer0 and External Interrupt. Based on the source of interrupt we change

the flow of execution to the code the service that interrupt source.

2. We pushed the Working register to location tempW at the beginning of the code that services

Timer0 to preserve it, since this code modifies the Working register. The value of W is restored

at the end this code.

8

9

10

3. How to Simulate the Stopwatch Example in MPLAB?

You have learnt in Experiment 3 that we can use the Stimulus tool to simulate external inputs to the

microcontroller. The Stimulus option is available in the Debugger menu as shown in Figure 5. When you

select New Workbook, a new window will appear where you can add the pins to stimulate and specify

type action to happen on this pion when stimulated.

Figure 5. Stimulus window.

In our system, we are observing one input; which is RB0 which is connected to the START/STOP

pushbutton. Specifically, we want to generate a rising edge on this pin wherever the pushbutton is

pressed. So, in the workbook window, we add RB0 pin and specify the action to be Pulse High.

Now to perform the simulation:

1. Add Low_Digit, High_Digit and Start_Stop to the watch window.

2. Place a break point at line 79 (Instruction return). This will allow us to see the change to

Start_Stop, if 0xFF the stopwatch counts, else it stops.

3. Place another breakpoint at line 105 (Instruction return), this will allow us to observe how

Low_Digit and High_Digit change

4. Run your code, you will observe nothing except that the values in the watch window are all
zeros.

5. Now Press “Fire”, the arrow next to the RB0 in the Stimulus pin, what do you observe?
6. Now, press “run” again, observe how the values of Low_Digit and High_Digit change whenever

you reach the breakpoint.
7. Press “fire” again, how do the values in Low_digit and High_Digit change now?

Remember to set the clock to 4 MHz in the Debugger-> Settings menu. Also, make sure that the

Watchdog Timer is off. To do so, select Configure-> Configuration Bits and put the Watchdog Timer in

the OFF mode. Read more about the Watchdog Timer in Appendix 2.

11

Appendix 1: Timer2 Module

Timer2 is another timer module that is available in the PIC16F877A microcontroller. The block diagram

of this timer is shown in Figure 6. Similar to Timer0, it is an 8-bit timer. However, it can be operated in

timer mode only as it can be triggered by the internal clock (Fosc/4). Also, Timer2 has prescaler and

postscaler hardware that can be used to extend the time generated by Timer2.

Figure 6: Timer2 block diagram.

Timer2 has two 8-bit data registers: TMR2 and PR2. TMR2 is used to store the initial count value while

PR2 is used to store the final count value. Whenever the value in TMR2 register equals that in PR2,

TMR2 is cleared and the Timer2 Interrupt Flag (TMR2IF) is set to indicate that. Note that you need to

set the T2ON bit in the T2CON in order to force Timer2 to start counting.

The prescaler hardware of Timer2 is similar to that of Timer0. It basically scales-down the clock of

Timer2 by some factor. The value of the prescaler can be specified using the T2CKPS1 and T2CKPS2 bits

in the T2CON register that is shown in Figure 7.

On the other hand, the postscaler in Timer2 delays setting the TMR2IF for specific number of times

that equals the postscaler value. The values of the postscaler can be set using the TOUTPS3:TOUTPS0

bits in the T2CON register.


Figure 7: T2CON register.

Accordingly, the time that takes Timer2 to reach the value in PR2 register and set the TMR2IF is given

by

𝑇𝑖𝑚𝑒 = (𝑃𝑅2 + 1) ×
4

𝐹𝑜𝑠𝑐
× 𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑠𝑡𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 (4)

12

Appendix 2: Watchdog Timer

The Watchdog Timer (WDT) is a part of hardware that can be used to automatically detect software

anomalies and reset the processor if any occur. A watchdog timer can get a system out of a lot of

dangerous situations.

Basically, it is timer similar to other counters in the PIC, but it has its own clock. When this timer is

enabled and it overflows, it resets the microcontroller. The WDT can be enabled/disabled

setting/clearing the WDTE bit in the Configuration Word. If you decide to enable the WDT, then you

need to clear it regularly in your program to avoid resetting the PIC unintentionally when the program

is running normally. To do so, you should use the CLRWDT instruction.

So, how long does it take the WDT to overflow?

The PIC data sheet specifies that the WDT has a period from start to finish of 18ms. This is dependent
several factors, such as the supply voltage, temperature of the PIC etc. The reason for the
approximation is because the WDT clock is supplied by an internal RC network. The time for an RC
network to charge depends on the supply voltage. It also depends on the component values, which will
change slightly depending on their temperature. For the sake of simplicity, we will assume that the
WDT resets every 18ms.

However, make this longer using the Prescaler hardware that we discussed in Timer0. This prescaler
can be assigned to WDT instead of Timer0 to scale down the WDT clock; hence extending the WDT
overflow. The assignment can be done using the PSA bit in the OPTION_REG which is given in Figure 2.
Notice that different values of the prescaler are used when it is assigned to the WDT. The table below
lists the possible time-out periods for the WDT when different values are used.

PS2,PS1,PS0 Rate WDT Time
0,0,0 1:1 18ms
0,0,1 1:2 36ms
0,1,0 1:4 72ms
0,1,1 1:8 144ms
1,0,0 1:16 288ms
1,0,1 1:32 576ms
1,1,0 1:64 1.1s
1,1,1 1:128 2.3s

Example. Suppose that want the WDT to reset the PIC after about half second. From the table above,
the closest value is 0.567s; hence we need to select the prescaler to be 101, i.e. the PS bits are 101. So,
we write

BANKSEL OPTION_REG ; make sure we are in bank 0
CLRWDT ; reset the WDT and prescaler
MOVLW B’00001101’ ;Select the new prescaler value and assign to WDT
MOVWF OPTION_REG

The CLRWDT instruction is used to clear the WDT before it resets the PIC. So, all we need to do is
calculate where in our program the WDT will time out, and then enter the CLRWDT command just
before this point to ensure the PIC doesn’t reset. If your program is long, bear in mind that you may
need more than one CLRWDT. For example, if we use the default time of 18mS, then we need to make
sure that the program will see CLRWDT every 18ms.

13

The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and
prevent it from timing out and generating a device RESET condition.

`

Appendix 3: 7-Segment Multiplexing

The way we designed the Stopwatch system used separate ports to interface the two 7-
segment displays. However, this might not be efficient in case we have more devices to
interface to the PIC. A solution of this is connect both displays to the same port and display the
value on each display for a short period of time repeatedly. This will give the user the illusion
that both displays are on. This technique is called multiplexing. Figure 8 shows an example of
multiplexing two displays.

Figure 8: 7-Segment multiplexing.

In this example the LED segments of all the digits are tied together. So, if you send date to any one of the
segment, it will be displayed on both segments! To avoid that, the common pins (Enable) of each digit
are turned ON separately by the microcontroller. When each digit is displayed only for several
milliseconds, the eye cannot tell that the digits are not ON all the time. This way we can multiplex any
number of 7-segment displays together. For example, to display the number 24, we have to send 2 to
the first digit and enable its common pin. After a few milliseconds, number 4 is sent to the second digit
and the common point of the second digit is enabled. When this process is repeated continuously, it
appears to the user that both displays are ON continuously.

The file Stopwatch Multiplexing Code.ASM contains the code required to implement the
stopwatch operation using 7-segment multiplexing. Try to compile this code and use it in the
Stopwatch Multiplexing Proteus Circuit to investigate the operation of multiplexing.

Page 1 of 4

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Name:

Student ID:

Section (Day/Time):

Timers

COMPUTER NAME:

Labsheet
6

Page 2 of 4

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet6: Timers

Name: Student ID:

Section:

(Pre-lab) Part1: The operation of the Timer0 Module and the related OPTION_REG
settings

We want to create a delay of 1.6 ms in some program using the Timer0 module in
PIC16F877A microcontroller and an oscillator with a value of 8 MHz. Answer the following
questions.

Q1) What is the internal frequency?

Q2) Find the instruction cycle time?

Q3) Using equation 3 in the tutorial, find suitable values for N, PH and PS to generate
this delay.

Q4) What are the values of the following registers: TMR0 and OPTION_Reg in order to
generate the time of 1.6 ms?

TMR0 = 0x
OPTION_REG = 0x

Page 3 of 4

Part2: Code Modification
We need to modify the experiment code in the Stopwatch Code.ASM file such that:

1. The system should count from 00 to 19 instead from 00 to 59.
2. The time step between successive values is 0.5s instead of 1s.
3. Oscillator value is still 4MHz.

Answer the following questions.

Q1) What is the internal frequency?

Q2) Find the instruction cycle time?

Q3) Using equation 3 in the tutorial, find suitable values for N, PH and PS to generate
this delay. Note that Ps is the value of SEC_CALC in the code.

; copy and paste your assembly code here and simulate the program in the Stopwatch

Proteus Circuit. Show the simulation to the lab engineer.

Page 4 of 4

Part 3: Using Timer2 in the Stopwatch

We need to modify the system such that instead of using Timer0, we want to use Timer2 for
timing the stopwatch. The system should operate as follows:

1. The system should count from 00 to 25 instead from 00 to 59.
2. The time step between successive values is 0.5s instead of 1s.
3. Oscillator value is 4MHz.

Remember that Timer2 has the period register (PR2) and a postscaler hardware in
addition to the prescaler. Read Appendix 1 in the tutorial.

What are the values of the following registers in order to generate the time of 0.5
second?

PR2: 0x

SEC_CALC:

Timer2 Prescaler counters: D' '

Timer2 Postscaler counters: D' '

T2CON: B' '

Now, write a C program to implement the stopwatch system using Timer2. You can
start with the incomplete code that is available in the Labsheet 6 Part 3.c file.

Notice that we defined the array lookTable that contains the 7-segment codes for
number 0 through 9. You can use this table to convert the LOW_DIGIT and HIGH_DIGIT
values to their segment codes by writing lookTable[LOW_DIGIT] and
lookTable[HIGH_DIGIT].

; copy and paste your assembly code here and simulate the program in the Stopwatch

Proteus Circuit. Show the simulation to the lab engineer.

1

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
 To familiarize you with the built-in A/D hardware module.

Pre-lab requirements

 Review the PIC16F877A datasheet section on the AD module.

 Appendix A quickly reviews the AD module.

Written by Eng. Enas Jaara – Revised by Prof. Iyad Jafar

7

Experiment 7: ANALOG-TO-DIGITAL
CONVERTER (A/D) MODULE

2

1. Introduction

In the real world, most of the signals sensed and processed by humans are analog signals. In order to

store, process and use these signals in digital systems, these signals have to be converted into digital

format. The process that is used for this purpose is called analog-to-digital conversion (ADC) and it

uses a special hardware call the analog-to-digital converter.

The ADC process is basically two steps:

1. Sampling: in this step, the ADC takes a sample of the input signal. This is done by closing a

switch (Sampling Switch) to connect the signal to a capacitor (Hold Capacitor) to store the

sample voltage. Since the capacitor is not ideal, we need to wait for the capacitor to

charge/discharge before opening the Sampling Switch to disconnect the capacitor. This time is

called the acquisition time.

2. Conversion: in this step, the voltage on the Hold Capacitor, which represents the sample

value, is converted using special hardware into n-bit binary value. The time required to

convert the sample is called the conversion time.

 Assuming that the sample value is to be represented using n bits, then the ADC basically divides a

finite range voltage (Input Range [Vref-,Vref+]) into 2n subranges such that each of these subranges has a

length of (Vref+- Vref-)/2n, which we call Resolution. The binary code of the sample is determined by

knowing the subrange that the sample belong to.

For example, consider a 3-bit ADC with [Vref-,Vref+]=[0,4]. Table 1 shows the subranges and the

corresponding binary value to be assigned to any sample in [Vref-,Vref+]. Any sample outside the range

[Vref-,Vref+] is clipped. Notice that the binary value is not necessarily the actual voltage of the sample. It

basically represents the number of the subrange to which the sample belong. For example, if the

binary value is 101, this implies the sample is in [2.5,3.0] volt. Usually, we assume the actual value to

be the minimum of the subrange, i.e. 2.5V in this example.

Table 1: Example of 3-bit ADC

Sub-Range Binary Value

0 ≤ input voltage < 0.5 000

0.5 ≤ input voltage < 1.0 001

1.0 ≤ input voltage < 1.5 010

1.5 ≤ input voltage < 2.0 011

2.0 ≤ input voltage < 2.5 100

2.5 ≤ input voltage < 3.0 101

3.0 ≤ input voltage < 3.5 110

3.5 ≤ input voltage < 4.0 111

Alternatively, it is common to assume that the ADC performs a linear mapping from [Vref-,Vref+] to [0,2n-

1]. Hence, we can calculate the corresponding voltage of the sample using

𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 =
𝑉𝑟𝑒𝑓+−𝑉𝑟𝑒𝑓−

2𝑛−1
× 𝐵𝑖𝑛𝑎𝑟𝑦 𝑉𝑎𝑙𝑢𝑒 + 𝑉𝑟𝑒𝑓− (1)

and we can determine the binary value of the sample using

𝐵𝑖𝑛𝑎𝑟𝑦 𝑉𝑎𝑙𝑢𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 =
2𝑛−1

𝑉𝑟𝑒𝑓+−𝑉𝑟𝑒𝑓−
× (𝑆𝑎𝑚𝑝𝑙𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 − 𝑉𝑟𝑒𝑓−) (2)

3

2. The PIC16F877A ADC

In general, embedded systems are used to sense different physical analog quantities such as

temperature, humidity and light. For this purpose, an ADC can be interfaced to the microcontroller to

perform conversion. Since this is very common in embedded systems, many microcontrollers have at

least one ADC module integrated within it. For example, the PIC16F877A has an 8-channel 10-bit ADC

module. This implies that this ADC can be connected to eight different signals and each sample is

represented using 10 bits.

Using the ADC module in PIC16F877A microcontroller is similar to using other modules inside the

microcontroller, i.e. using special function registers. Specifically, the ADC in PIC16F877A has two

control registers; ADCON0 and ADCON1, and two result data registers; ADRESH and ADRESL. The

control registers are used to configure the A/D while the result registers are used to store the 10-bit

binary value that comes out of the ADC. Table 2 shows these registers.

The ADCON0 register contains a set of bits:

1. ADON  Turn on the ADC. By default, it is turned off on power-up to save power.

2. CHS2:CHS0  Select the channel to read the sample from.

3. GO/𝐃𝐎𝐍𝐄̅̅ ̅̅ ̅̅ ̅̅  Start the conversion process once the sample is acquired. This bit is cleared by

the ADC once the conversion is complete.

4. ADCS2:ADCS0  Specifying the clock rate of the ADC. Note that ADC2 is in ADCON1 register.

On the other hand, the ADCON1 register has the following bits:

1. PCFG3:PCFG0  Specify whether PORTA and PORTE pins are analog or digital pins.

2. ADFM Format the 10-bit result in the result registers.

Table 2: Control and Data Register of the ADC

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ADRESH A/D Result Register - High Byte

ADRESL A/D Result Register - Low Byte

ADCON0 ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE - ADON

ADCON1 ADFM ADCS2 - - PCFG3 PCFG2 PCFG1 PCFG0

In order to use the ADC, we need to write instructions to configure its features such the clock rate, the

channel being used and the formatting of the result. Please refer to Appendix 1 to learn the details on

how to specify the values of different bits in these two registers.

In general, using the ADC follows the steps that are shown in Figure 1. For the ADC in PIC16F877A,

note that:

 We need to wait some time before we start a conversion process after turning on the ADC on.

 Closing the sampling switch to start acquiring the sample is done by selecting the input

channel.

 The end of conversion is known by checking the GO/DONE bit or the ADC interrupt flag

(ADIF).

4

Figure 1: Steps for using ADC.

3. ADC Example

Let’s demonstrate the use of the PIC16F877A ADC with Fosc being 2 MHz in an example in which we

want to convert the voltage that is coming out of a potentiometer continuously to 10-bit digital value

and display the upper 8-bit of the result on three 7-segment display as a BCD value.

The potentiometer is connected to RA0, i.e. we will use channel0 for ADC. The three segment displays

are common-anode and are connected to PORTD. We will use 7-segment multiplexing to display the

value on the displays (Read Appendix 3 in Experiment 6). To control which display is enabled, we

connect the common input of the hundreds, tens and units displays to RB1, RB2 and RB3 pins,

respectively.

We will configure the ADC features as follows:

 Turn on the ADC by setting the set ADON bit.

 Choose the analogue channel 0 “AN0” as the analogue input of the AD module by setting CHS2:

CHS0 to 000.

 RA0 should be configured as analog input. Set the voltage references Vref- and Vref+ to be

internal. This can be done by setting PCFG3:PCFG0 bits to 1110 (other options are possible,

check Appendix 1).

 The result is to be left justified such that the upper 8-bits will reside in ADRESH and the lower 2

bits will reside in ADRESL. In this program, we will choose to ignore ADRESL and only deal with

the upper 8 bits of digitized value to simplify program development. To do so, clear the ADFM

bit.

 The ADC clock is set to Fosc/8 by setting ADCS2:ADCS0 bits to 001.

 Hence, ADCON1 should be 0x0E and ADCON0 should be 0x41.

In general, the program will operate such that it continuously uses the ADC to convert the value on

RA0 to digital, convert the value in ADRESH from binary to three BCD digits that represent the

hundreds, tens and units digits of the corresponding digital value, and then display them on the 7-

5

segment displays. The flowchart of the system is given in Figure 2. Study the flowchart along with the

following code to understand the operation of the system. Try to simulate the program using the ADC

Example Proteus Circuit.

Start

Initialization
(RA0 analog input, RA3:RA5 digital output,

PORTD output, Turn-on ADC)

ADIF = 1?

Configure ADC
(Select ADC clock, Select Channel, Choose

Formatting)

Start A/D Conversion
(Set GO bit)

Clear ADIF and Read Upper
8-bit of Result

Convert Result to BCD

Display on 7-segment

Yes

Delay to Acquire Sample

No

Figure 2: Flowchart of ADC Example.

6

7

8

9

Appendix 1: PIC16F877A ADC Registers

CHS2 CHS1 CHS0 Channel Pin

0 0 0 Channel0 RA0/AN0

0 0 1 Channel1 RA1/AN1

0 1 0 Channel2 RA2/AN2

0 1 1 Channel3 RA3/AN3

1 0 0 Channel4 RA5/AN4

1 0 1 Channel5 RE0/AN5

1 1 0 Channel6 RE1/AN6

1 1 1 Channel7 RE2/AN7

10

1

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Name:

Student ID:

Section (Day/Time):

COMPUTER NAME:

Labsheet

7

ANALOG-TO-DIGITAL CONVERTER
(A/D) MODULE

2

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet 7: Analog-to-Digital Converter (A/D) Module

Name: Student ID:

Section:

Overview

In this experiment, we will use the ADC in PIC16F877A to read the temperature and display it

on two 7-segment displays without using 7-segment multiplexing. The sensor that is used to

acquire the temperature is the MCP9700. The Proteus circuit is available in the Labsheet 7

Proteus Circuit and is shown in Figure 1.

Figure 1: Proteus Circuit.

According to the datasheet, the MCP9700 sensor can measure the temperature in the range of [-

40,+125] ̊C and has a positive temperature coefficient of 10mV/ ̊C, i.e. its output

increases/decreases by 10mV when the temperature increases/decreases by 1 ̊C. For example,

when the temperature is -40 ̊C, the output voltage is 0.1V and when the temperature increases

to-39 ̊C the output voltage becomes 0.11V.

The chart in Figure 2 shows the relation between the sensor output voltage and the measured

temperature. From this chart, you can notice that the minimum output voltage is 0.1V which

represents the minimum temperature of -40 ̊C and the maximum output voltage is 1.75V which

represents the maximum temperature of +125 ̊C.

Hence, and in order to get the best performance of the ADC, we connect AN3 (Vref+) to 1.75V

voltage source and we connect AN2 (Vref-) to 0.1V voltage source. Accordingly, the resolution of

the ADC is (1.75-0.1)/1024 or 1.6mV/step. In other words, when the input voltage

increases/decreases by 1.6mV, the ADC digital output increases/decreases by 1. Table 1 shows

the input value range and the corresponding digital output.

3

Figure 2: Voltage-temperature relationship for MCP9700.

Table 1: Input Range and Corresponding Digital Output
Input Range Digital Output

0.1V ≤ input voltage < 0.1016V 0

0.1016V ≤ input voltage < 0.1032V 1

0. 1032V ≤ input voltage < 0.1048V 2

0.1048V ≤ input voltage < 0.1064V 3

0. 1064V ≤ input voltage < 0.1080V 4

0.1080V ≤ input voltage < 0.1096V 5

0.1096V ≤ input voltage < 0.1112V 6

.

.

.

.

.

.

.

.

.

.

1.7468V ≤ input voltage < 1. 7484V 1022

1.7484V ≤ input voltage < 1.75V 1023

Based on this, we can conclude that when the temperature changes by 1 ̊C the output voltage of

the sensor changes by 10mV which causes the ADC digital output to change by

10
𝑚𝑉

𝐶𝑜 ÷ 1.6
𝑚𝑉

𝑆𝑡𝑒𝑝
 ≅ 6

𝑆𝑡𝑒𝑝

𝐶𝑜 (1)

In other words, the ADC output increases/decreases by 6 approximately when the temperature

increases/decreases by 1 ̊C. We can use this conclusion to simplify reading the temperature

when we write our program instead of performing calculations using the equations we have in

the tutorial.

Prelab

You are required to modify the program in the ADC Example Code.ASM to read the temperature,

convert it to two BCD digits, and display it on the 7-segment displays. The ADC is configured as

follows:

 Vref+ = AN3, Vref- = AN2

 RA5 or channel4 is the ADC input

 ADC output is right-justified

 ADC clock is Fosc/8

4

What are the values to be stored in ADCON0 and ADCON1 register?

ADCON0 = ()2

ADCON1 = ()2

The system should show only the temperature when it is in [5,35] ̊C range, otherwise, the

system shows 0xEE on the displays. Using equation (1), what are the binary and decimal

values in ADRESH and ADRESL registers that correspond to the required range? Notice

that ADRESH will hold the most significant bits of the conversion result since we chose

the result to be right-justified. Remember that a temperature of 5 ̊C implies 45 ̊C

increments from -40 ̊C.

 ADC Result

Temp. ADRESH ADRESL

5 ̊C

35 ̊C

ADRESL = ()10

ADRESH = ()10

In Lab

Modify the code in order to read the digital output of the ADC and then convert to a 2-digit

temperature in ̊C displayed on a 2-digit 7-segment display only when the temperature is in the

range of 5 ̊C to +35 ̊C. In order to do that, you need the following:

 Reading ADC Result: You need to read the ADC result from the ADRESL and ADRESH

registers and store them in RL and RH locations, respectively.

 Converting the ADC Result to Temperature: to convert the ADC result to actual

temperature, we need to divide it by 6 then subtract 40 (WHY?). However, the ADC result

is 10 bits (the most significant two bits in RH and the least significant 8 bits in RL) and

our microcontroller is 8-bit. So, we can’t do the calculations on the ADC result directly.

Alternatively, we express the ADC result in RH::RL by

𝑨𝑫𝑪 𝑽𝒂𝒍𝒖𝒆 = 𝑹𝑯𝟏 × 𝟐𝟗 + 𝑹𝑯𝟎 × 𝟐𝟖 + 𝑹𝑳 (2)

Where RH1 and RH0 are bits 1 and 0 in RH, respectively. Mathematically, we can break

down the calculation of the temperature to

𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆 =
𝑹𝑯𝟏×𝟐𝟗+𝑹𝑯𝟎×𝟐𝟖+𝑹𝑳

𝟔
− 𝟒𝟎 (3)

𝑻𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆 = 𝑹𝑯𝟏 × 𝟖𝟓 + 𝑹𝑯𝟎 × 𝟒𝟒 +
𝑹𝑳

𝟔
− 𝟒𝟎 (4)

Accordingly, write the subroutine CONVERT_TEMP to convert the values in RH and RL to

actual temperature using equation (4) and store it in location RESULT.

5

 Check Temperature: write a subroutine CHECK_RANGE to check whether the value in

RESULT is in [5,35]. If the temperature is in range, store 1 in location VALID. Otherwise,

store 0.

 Convert to BCD: Modify the CHANGE_to_BCD subroutine to convert the temperature

value in RESULT into two separate BCD digits instead of three.

 Display: Modify the DISPLAY subroutine to display two digits instead of three without

using 7-segment multiplexing. The units digit is shown on PORTD while the tens digit is

shown on PORTC. The subroutine should check if VALID is 0 or not in order to show the

temperature if it is in range or to show 0xEE otherwise.

; Copy and paste your code here

Ask your engineer to check the simulation

1

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
 Introduce the USART module of the PIC 16series through an industrial example. 

 To become familiar with the serial communications using PIC and RS232 Protocol. 

 Become familiar with serial communication testing techniques either in software and

hardware.

Written by Eng. Enas Jaara – Revised by Prof. Iyad Jafar

8
Experiment 8: The USART

2

1. Introduction

The universal synchronous asynchronous receiver transmitter (USART) is one of serial

communication modules available in PIC16F87x microcontroller. When operated in the asynchronous

mode, it can be used to send and receive data simultaneously, i.e. full-duplex mode. In this mode, 8-bit

data is sent/received along with a START and STOP bits as frame. Optionally, a parity bit can be added

to the frame to aid detection of odd errors. Figure 1 shows one frame.

Figure 1: Contents of one frame.

The block diagram of the asynchronous transmitter is shown in Figure 2. There are several registers

that are associated with using the asynchronous transmitter. These are listed in Figure 3. In order to

use this transmitter, you need to consider the following steps:

1. The output of the transmitter appears on pin RC6; hence we need to clear TRISC<6> bit to

configure RC6 as output.

2. Specify the transmission rate by specifying the values of the SPBRG register and BRGH bit in

the TXSTA register (more on this later).

3. Enable the USART module by setting the SPEN bit in RCSTA register and configure it in

asynchronous mode by clearing the SYNC bit in the TXSTA register.

4. If interrupts are desired, set the TXIE in the PIE1 register, GIE and PEIE bits in the INTCON

register.

5. Enable transmission by setting the TXEN in the TXSTA register. This will set the TXIF flag bit

to indicate the TXREG is empty.

6. If 9-bit transmission is desired:

a) Set the TX9 bit in the TXSTA register.

b) Store the ninth bit in TX9D in the TXSTA register.

7. Store the data to be transmitted to TXREG register to start the transmission.

Figure 2: The block diagram of asynchronous transmitter.

3

Figure 3: Registers related to the asynchronous transmitter.

Similarly, the block diagram of the asynchronous receiver is shown in Figure 4 while the related

registers are shown in Figure 5. The steps for using the asynchronous receiver are as follows:

1. The input of the receiver is from pin RC7; hence we need to set TRISC<7> bit to configure RC7

as input.

2. Specify the transmission rate by specifying the values of the SPBRG register and BRGH bit in

the TXSTA register (more on this later).

3. Enable the USART module by setting the SPEN bit in RCSTA register and configure it in

asynchronous mode by clearing the SYNC bit in the TXSTA register.

4. If interrupts are desired, set the RCIE in the PIE1 register, GIE and PEIE bits in the INTCON

register.

5. If 9-bit reception is desired, set the RX9 bit in the RCSTA register.

6. Enable the reception by setting bit CREN in RCSTA register.

7. The RCIF flag in PIR1 will be set when reception of one word is complete and an interrupt will

be generated if RCIE is set.

8. Read the RCSTA to get the 9th parity bit and determine if any error occurred (OERR, FERR

bits).

9. Read the 8-bit received data by reading RCREG.

10. If any error occurred, clear the error by clearing the CREN.

Figure 4: The block diagram of the asynchronous receiver.

Figure 5: Registers related to the asynchronous receiver.

4

To specify the transmission/reception baud rate, you need to specify the values of the SPBRG register

and the BRGH bit in the TXSTA register. These values along with the frequency of the PIC clock are

used to determine the baud rate using one of the following formula

𝐵𝑎𝑢𝑑 𝑅𝑎𝑡𝑒 = {

𝐹𝑜𝑠𝑐

64(𝑆𝑃𝐵𝑅𝐺+1)
, 𝐵𝑅𝐺𝐻 = 0

𝐹𝑜𝑠𝑐

16(𝑆𝑃𝐵𝑅𝐺+1)
, 𝐵𝑅𝐻𝐺 = 1

 (1)

Alternatively, you can use the tables in the datasheet to find the proper values for SPBRG and BRGH in

order to have specific baud rate at certain Fosc.

The information presented previously serves as a quick overview of the USART. You are

strongly recommended to review the topic from the textbook or from the datasheet in case you

feel that you are missing some details.

2. USART Example

In a certain factory, a modern computerized machine is serially connected to a control computer. The

machine has a PIC16F877A microcontroller and uses its Universal Synchronous Asynchronous

Receiver Transmitter (USART) module to communicate with the computer. When the machine is

powered on, it sends the message “Machine ready to receive commands” to the control room

indicating that it is ready to receive commands. After receiving the message by the computer, an

operator sends commands to the machine through the control computer. In this experiment, since the

there is no physical machine to carry out the commands, the commands will be simply displayed on 7-

segment display.

It is required to write a program for the PIC to perform the required operation. The general flow of the

program is as follows:

 Initialize I/O, enable interrupts, configure USART settings (baud rate, transmitter and receiver

settings).

 Send message to control computer.

 Wait until command is received from control computer. When received, show it on the 7-

srgment display.

The following steps details the operation of the program.

Step 1: Initialization

 PORTD will be connected to the 7-segment display to show the received commands. It is
configured as output.

 USART pins
o RC6 is used by the USART transmitter. So, it has to be configured as output.
o RC7 is used by the USART receiver. So, it has to be configured as input.

 USART Configuration:
o We will use the USART in asynchronous mode, so (SYNC = 0).
o Enable serial port (SPEN = 1), enable receiver (CREN = 1), enable transmitter (TXEN = 1)
o The Baud rate to be used is 9600 bps. Assuming the PIC is running at 4MHz, review

datasheet or do hand calculations to find that SPBRG has to be filled by 25 and high baud
rate will be enabled (BRGH = 1) in order to communicate at this rate.

 Interrupts: the PIC will use the receiver interrupt to know when a command is received. So, we
need to set (GIE = 1), (PEIE = 1) and (RCIE = 1). 

5

Step 2: Sending Message to Control Computer

When the machine starts, it should send the message “Machine ready to receive commands” to the
host computer. The message has 33 characters and will be stored in a lookup table called Message
with the first entry being letter “M” and last entry being letter “s”. The table will be accessed 33 times
in a loop to read all the letters. The loop variable INDEX is initialized to 0 and is incremented every
time a letter is sent. When it reaches 33, this implies that whole message is sent.

In order to send each character serially, it has to be stored to the transmitter register in the USART

(TXREG). The character is sent serially if the USART is configured correctly. However, whenever we

send a character, we need to make sure that the previous one is sent; otherwise, it will be overwritten.

In order to avoid that, we have four different approaches:

 Poll the TXIF interrupt flag found in PIR1 register which is set when the TXREG is empty

 Poll the TRMT flag found in TXSTA register which is set when the data when the transmission

of data is completed (This is the approach used in the program).

 Enable the USART transmitter interrupt and write an interrupt service subroutine to send the

next character.

 Insert a sufficient delay between writing characters to the TXREG. For example, if the speed is

9600 bps, this implies that the time required to transmit a 10-bit frame is 10/9600, which is

1.041ms approximately.

Step 3: Waiting for Commands from Control Computer

After the whole message is sent, the code goes into an infinite loop waiting to receive commands from

the control computer. The commands will be received serially and placed in the RCREG. When a whole

frame is received in the RCREG, the RCIF flag in the PIR1 register is set. So, in order to decide whether

a command is received or not, we can:

 Poll the RCIF flag in the PIR1 register.

 Enable the USART receiver interrupt and write an ISR to read the RCREG when the interrupt

occurs (This is the approach used in the program).

 Read the RCREG periodically at sufficient time interval.

While receiving the commands from the control computer, it is important to check if there are errors

in the received data. There three types of errors in serial communication:

 Framing errors – This error occur due to the difference in the speed of communication

between the transmitter and receiver (not correctly set to match each other). This error is

detected when a stop bit is received as CLEAR and the framing error bit (FERR) in the RCSTA

register is set to indicate occurrence. The FERR bit is set/cleared for every frame received to

indicate if there is speed mismatch. Therefore, the FERR value will be updated with every

coming frame and it is necessary to read RCSTA value before RCREG and test this bit to check

if we are receiving the data correctly.

 Overrun errors - The receiver module has a two-level deep buffer in which the received data is

stored. Data received in the RSR register ultimately fill the buffer. However, if the two buffer

locations are already occupied, and a third frame of data is being shifted into the RSR, once it is

complete, it will not be stored in the buffer and thus be lost, and hence an overrun error

occurs. Flag OERR in the RCSTA register is set to indicate this error occurrence. Once this

OERR bit is set, no further data is received! The FIFO buffer is cleared by reading data in the

RCREG, that is, it needs two RCREG reads to empty the buffer! Furthermore, once set, the

OERR bit can only be cleared in software by clearing and setting the CREN bit. To avoid

6

overrun errors, the user should always make sure to read data at appropriate speeds such that

the buffers won’t become full!

 Parity Errors – This error is used to detect odd number of erroneous bit transmissions. This is

done by enabling the 9th bit mode in the RCSTA register “RX9 bit”. However, no hardware is

present to calculate and check for parity, therefore, the sender should write appropriate code

to calculate desired parity (odd/even) and place the result in the TX9D pin in the TXSTA

register before sending the frame. An equivalent code should read the received parity RX9D

from the RCSTA register calculate parity and check for a match!

Step 4: Displaying Commands

When a command is received by the PIC, it has to display them on a common-anode 7-segment

displays. The received commands are basically the numbers 0 through 9. Thus, the program uses a

lookup_TABLE table to convert the command into 7-segment code and output it to PORTD that is

connected to the display.

The code for the whole program is available in the USART Example.ASM file and it is listed below for

your reference. Study the code before you start with the labsheet.

7

8

3. Simulating and Testing in MPLAB

At first glance, you might think that you cannot test your code unless you have a physical control PC

and a machine at home!! Surely this is not feasible. Therefore, we will now introduce you to testing

USART serial communication in MPLAB IDE.

To test transmitting the data from the PIC, do the following after you build your project:

1. From the Debugger Menu, Select Tool  MPLAB SIM.

2. From the Debugger Menu, Settings  select UART1 IO.

3. The following screen will show up.

4. Select Enable UART IO.

5. Choose to show the output on Window. Click OK.

6. Now, if the output window is not already shown, go to View  Output. Notice that a

new tab (SIM Uart1) has shown up as shown below.

9

Now run the program. You will see that the message has appeared in the Uart1 IO window which we

have already enabled.

To test receiving the commands from the computer, we will use the Stimulus tool that we

introduced in Experiment 3. The procedure will be revisited here again:

1. Debugger  Stimulus New Workbook

2. In the Async tab choose RCREG, and set the action as Direct Message, in the Message field type

in the character you wish to send as shown below.

3. Place a break point at instruction goto IntService.

4. Run the program and wait until the message “Machine is ready to receive commands” is shown

on the output window.

5. Now, click on Fire. The program execution stops at goto IntService. Step into the code.

6. Once you finish stepping in the RX_Receive subroutine, you should see that PORTD has the

value of “11111000” which is the code for 7.

1

Clk

University of Jordan

School of Engineering

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Name:

Student ID:

Section (Day/Time):

 The USART

Labsheet

8

2

UNIVERSITY OF JORDAN
SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING
EMBEDDED SYSTEMS LABORATORY CPE0907334

Labsheet 8: The USART

Name: Student ID:

Section:

(Pre-lab) Part1: The operation of the USART Module and the related TXSTA, RCSTA and SPBRG
settings

Q1) What are the values of the following registers: TXSTA, RCSTA and SPBRG that should be

initialized with, to configure USART module as follow:

1. Setting the baud rate to 1200 with low speed.
2. Enable s continuous receive and transmitter module.
3. 8-bit transmission and reception.
4. Set up the USART port for Asynchronous operation.

Register 7 6 5 4 3 2 1 0
TXSTA
RCSTA
SPBRG

Q2) Write the necessary instruction(s) required for enabling the USART receiver interrupts.

Q3) For the USART example explained in the tutorial, what changes should be made to the code
in order to send the message “Machine is Ready”?

COMPUTER NAME:

3

Part 2: Coding

In the Labsheet 8 Proteus Circuit, you will find two microcontrollers; PIC1 and PIC2, that have 4

MHz clock and are supposed to communicate serially. PIC1 has four switches connected to the

lower 4 bits of PORTB while PIC2 has two switches connected to RC1 and RC0. PIC1 has a green

and red LEDs connected to RC1 and RC0, respectively, and PIC2 has a 7-segment display

connected to PORTB.

When the system starts, PIC1 is supposed to read the four switches and send them to PIC2

serially and then waits for PIC2 to send an acknowledgment. If the received acknowledgement

contains 0xCC, the green LED is turned on. In case the acknowledgment has a value of 0xEE, the

red LED is on. PIC1 repeats these operations indefinitely.

When PIC2 receives the values, it should read the two switches connected to it and then add the

read value to the received value. If the result is less than 10, then it is displayed on the 7-segment

display connected to PORTB of PIC2 and an acknowledgement message containing the value of

0xCC is sent to PIC1. Otherwise, PIC2 should display 0xE on the display and send an

acknowledgement message with value 0xEE to PIC1.

Hints:
 Note that the transmitter and the receiver in the USART in PIC1 and PIC2 should be

enabled.

 Use baud rate 19200 assuming BRGH=1 and Fosc = 4.000 MHz.

Ask your engineer to check the run.

 University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Name:

Student ID:

Section (Day/Time):

Lab 3 Hardware Exercise

Labsheet

3-B

2

Lab 3 Hardware Exercise

In this tutorial we will guide you through the steps to build your first hardware circuit, it is a simple circuit based on 16F84A PIC which

drives a 7-segment display to show the numbers from 0 to 9 continuously. The PIC is already programmed and placed for you!

This basic circuit uses the following components (you should have read the “Guide to Hardware I” by now and familiarized yourself with all

the hardware components listed before coming to the lab!):

We will use a 16F84A PIC, A 7805 regulator, two 22pF capacitors, a 7-segment display and required resistors!

Since this is your first hands-on experience with hardware, and to ensure that the circuit works with you we will specify all the

interconnects you need, this is necessary for many students have no basic foundation in electronics or basic circuit construction.

The Breadboard layout below is to refresh your knowledge about breadboard structure: (The line in Purple represents that these spaces are

internally one node)

3

Follow the following steps to construct the circuit

Step 1: Ensure that the power connections are as follows, We will use the +15V adjustable power knob as Input power source to the

regulator, place the knob at the direction indicated, this means an approximate power of 7 – 8 volts!

In this experiment we will use the following color coding:

Blue: to connect to ground!

Orange: To connect to power supply

Green: to connect between all other components!

4

Step 2: Interfacing all the necessary components to power up the PIC and provide oscillation! Connect the 7805 regulator, the 4MHz

oscillator (with the required 22pF capacitors) and the MCLR pin as follows:

The dots inside the regulator and the oscillator indicate that the pins are directly below them such that you will know where exactly to place

them!

5

Step 3: Interfacing RB0 – RB3 to segments A to D! Note that the resistors are needed to limit the current to the LEDs making up the 7-

segment such that it will not burn out (Note: some 7-segments have high internal resistors values and do not necessarily require external

resistors!)

6

Step 4: Interfacing RB4 – RB6 to segments E to G!

7

Circuit on breadboard

Your circuit on breadboard should be similar to this picture

Ask your engineer to check the circuit.

1

GUIDE TO HARDWARE I
Required Study Material

Prepared by Engrs. Ashraf Al-Suyyagh – Enas Ja‟ra

e present this guide to serve as a reference for

many electrical and electronic components

which students are to use throughout the lab course

and the final project. We attempt to cover all

required material such that all students will be on the

same level of basic knowledge. The components are

presented in the context of their use in embedded

systems where they are interfaced with

microcontroller devices.

1. CLOCKING SOURCES
Microcontrollers need clocking sources to

synchronize their functions. An ideal clock is a

square wave function. There are two components

which provide such capability: oscillators and

resonators. Basically the faster the clocking source;

the faster the processing speed. However, fast

processing also requires more current and therefore

generates more heat. PIC 16F series can operate up

to 20MHz whereas the 18F series has an operation

speed of up to 40MHz. Details of operation

principles, interfacing and calculations are presented

in these following subsections

1.1. Oscillators

Oscillators usually built from crystal (most notably

Quartz crystal– as in wristwatches) have simple

operation principle: The use of the mechanical

resonance of a vibrating crystal of piezoelectric

material to create an electrical signal with a very

precise frequency. To make things clear: we will

start to define terms and simplify operation

principles; a piezoelectric material is one which has

the characteristic of changing shape when voltage or

an electric field is applied to it then reverts back to

its original shape once the induced voltage/electric

field is removed. While switching back to its

original state, the material itself generates an electric

field and thus a voltage with very precise frequency

which is the oscillator frequency. So simply, to get

the oscillator to work, feed it with voltage at one pin

and use the output frequency from another. In this

manner, the oscillator can be modeled as an RLC

circuit with a specific resonance frequency as you

should have already learnt in the Circuits II course.

Yet, since crystals are mechanical devices which

vibrate at their resonance frequency, they are not

that precise, that is, they don‟t produce an ideal

square wave function of which the high level of the

signal is fixed at 50% of the period‟s time, and

instead it can be any time in between 40% - 60% of

the period. Therefore, to account for such errors, the

clock signal is divided by a certain fixed value to

minimize error effects, in the PIC MCUs, the input

clocking source is divided by four. In that manner,

every four pulses of the original signal will generate

one pulse in the new signal.

Figure 1 below further clarifies the idea; the top

signal is an ideal square wave signal, the duty cycle

of which is exactly half the period. Notice how the

middle signal – the actual signal as generated from a

clocking source – deviates from the ideal, the duty

cycle differs (red). By dividing the cycle by a fixed

value – bottom signal – we minimize the errors for

the new signal hides the frequent changes in between

successive pulses.

Figure 1 - Clock

Oscillators come in variety of form factors and

speeds. Figure 2 shows two common form factors of

oscillators, the 2-pin oscillator (left) and 4-pin

oscillator (right). You can place the 2-pin oscillator

in either direction on the OSC pins of the

microcontroller, the 4-pin oscillator only uses three

pins and the forth is not connected, the pins are

GND, Vcc and output. Refer to the datasheet of the

oscillator to determine which pin is which.

W

Ideal Clock

Actual Clock

Clock/4

2

Figure 2 - Two Common Shapes of Oscillators

After connecting an oscillator, one should explicitly

specify to the PIC which oscillator speed range and

type it should expect. This option can be set in either

the MPLAB configuration bits window prior to

programming or by explicitly specifying it in the

configuration word in the source code. There are

four options:

 XT – Crystal: 1-4 MHz

 HS – High Speed: >= 4 MHz, and with

ceramic resonators.

 LP – Low Power: <= 200 KHz,

 RC – Resistor-Capacitor (if you build the

resonance circuit by yourself)

Along with the crystal, two capacitors of

approximately (10-33) pF are required, crystal needs

loading capacitors to work at the exact operating

frequency (i.e. to get a stable oscillation from the

crystal oscillator) and for noise immunity. An

important note though is that the operating

frequency is not fixed and that it varies with

temperature. The advertised frequency is usually

specified at room temperature 25C, clocks slow

down when temperatures increase or decrease from

the nominal room temperature. For accurate timing

one needs to know the operating frequency at

different temperatures, for this we can use the

following formula (assume all other parameters are

at their recommended values):

F = F0(1 – P x (T-T0)
2
)

Where:

 T is the expected temperature in Celsius

 T0 room temperature 25C

 F0 advertised oscillator frequency

 F actual frequency at temp T

 P is the frequency stability coefficient

(obtained from datasheet – units in ppm)

Example:

A 32 kHz oscillator with a frequency stability

coefficient of 0.004 ppm running in arid

environment where average temperature is 35C will

actually have an oscillation frequency of:

32000(1 – 0.004 (35-25)
2
) = 19.2kHz!!

From the above example, we clearly show the

importance of considering temperature effects upon

the frequency of operation.

Figure 3 shows a typical crystal interfacing to a PIC

Figure 3 - Interfacing a 4MHz Crystal to PIC16F877A

1.2. Resonators

Resonators are made of high-stability piezoelectric

ceramics and share the same operating principles of

oscillators but differs in that it consists of a voltage-

variable capacitor that acts in some ways like a

quartz crystal. The thickness of the ceramic substrate

determines the resonance frequency of the device.

Resonators have either two or three pins. They need

not loading capacitors. They have a similar

connection as the oscillator in Figure 3, if a three

lead resonator is used the middle pin is connected to

GND. Figure 4 shows a typical resonator.

Figure 4 - A Typical Resonator

3

2. REGULATORS
A voltage regulator is an electrical regulator

designed to automatically maintain a constant

voltage level at the output given varying voltage at

the input. Depending on the part number and

manufacturer specifications, regulators can take a

limited range of input voltages and produce a limited

range as well. Regulators most often have metallic

heat sinks attached to dissipate heat more efficiently.

Many commercial regulators regulate fixed voltages,

commonly 3, 5, 9, 12 and 15 volts. One must be

cautious to the input and output currents to and from

the regulator, too much input current than specified

will overheat and eventually burn the device. Too

much load current will have the effect of regulator

output voltage drop!

There are two main series of regulators: the 78xx

and 79xx series. The 78 represents a family of

regulators which regulates positive voltages and the

79 family regulates negative ones. The xx part is the

output voltage of the device.

Examples:

 7805: 5V DC Regulator

 7905: -5V DC Regulator

 7808: 8V DC Regulator

 7909: -9V DC Regulator

Regulators have three pins, one connected to the

input voltage source, another to the circuit and the

middle one is shared ground in between the input

source and the circuit. Figure 5 shows a typical

regulator.

Figure 5 - A Typical 7805 Regulator

2.1. More on Regulator Heat Sink

The heat sink is a component designed to lower the

temperature of an electronic device by dissipating

heat into the surrounding air. As a general rule the

input voltage should be limited to 2 to 3 volts above

the output voltage. The LM78XX series can handle

up to 36 volts input, be advised that the power

difference between the input and output appears as

heat. So heat which will be dissipated by the chip

during the voltage regulation process. This can cause

the chip to heat up, and so a heat sink is often used

to speed up heat removal and prevent overheating.

Figure 6 shows a typical in-circuit connection for the

7805 regulator. A couple of coupling capacitors

(between 10 uF and 47 uF) are required on the input

(V-IN) and output (V-OUT) and connected to

ground. Coupling capacitors are used for good

regulation and to reduce unwanted AC signals riding

on DC supply circuits (Noise)

Figure 6 - 7805 Circuit Diagram

3. PIC RESET CIRCUIT
As you should have already learnt in the course, PIC

MCUs already have a master clear pin called

MCLR, keep in mind that this is an active low pin.

Therefore, PIC reset circuitry is simply constructed

by wiring a switch to MCLR, and when pushed

gives logical „0‟ or GND to this pin. This has an

effect of resetting the microcontroller, clearing all

RAM and starting program execution from the

beginning. A pull up resistor circuitry is used to

hold the input at logic “1” state as long as the reset

button is not pressed. Figure 7 shows the circuit

diagram of the reset circuitry.

Heat Sink

O/P 5V

GND

I/P >5V

To PIC Vcc

To PIC Vdd

4

Figure 7 - PIC Reset Circuit

4. PULL-UP AND PULL-DOWN RESISTORS
Pull-up resistors are used in electronic logic circuits

to ensure that inputs to logic systems settle at

expected logic levels if external devices are

disconnected. The idea of a pull-up resistor is that it

weakly "pulls" the voltage of the wire it's connected

to towards 5V (or whatever voltage represents logic

"high"). However, the resistor is intentionally weak

(high-resistance) enough that, if something else

strongly pulls the wire toward 0V, the wire will go

to 0V. Pull-down resistors operate in a similar

fashion where they are initially pulled down to logic

0 through a connection to ground, but when a source

pulls it up toward logic high it will change state. Pull

up and pull down resistors are used with switches

and push buttons to fix the state of the pin connected

to the switch at a predetermined state and not be kept

floating. Pull up and pull down resistors take a

minimum value of 4.7kΩ.

5. LIGHT EMITTING DIODES
Light emitting diodes or LEDs are semiconductor

light sources used as indicator lamps in many

electronic devices. Modern versions are available

across the visible, ultraviolet and infrared

wavelengths, with very high brightness and come in

a variety of shapes and sizes. The physics behind

LED operation is covered in the Electronics I course

and will not be offered here. Figure 8 shows the

different color spectrum of LEDs.

Figure 8 - Different Colors of LEDs

In order to switch a LED on, forward current must

pass from the anode to the cathode, but how to

determine which pin of the LED is anode and which

is cathode, generally, there are two ways:

1. The longer lead is anode, the shorter is

cathode.

2. The cathode has a flat surface as shown in

Figure 9

Figure 9 - Determining Cathode and Anode in LED

Resistors with values in between 220Ω to 1kΩ are

placed in between the voltage source (often 5 to 9V

or even more) and the anode to limit the current

entering the LED or else it will burn. The lesser the

resistor value, the brighter the LED shines (Ohms

Law). In this case these resistors are called current

limiting resistors.

5

Figure 10 shows how to interface a LED to the

PORTC pin 1

Figure 10 - LED Interfacing

Not only are LEDs used as discrete components but

are also the building blocks of LED Matrices and 7-

Segment displays. Figure 11 shows an example of a

LED matrix.

Figure 11 - LED Matrix

6. SEVEN-SEGMENT DISPLAYS
A Seven-Segment display, as its name implies, is

composed of seven segments (or technically of

seven LEDs) which can be individually switched on

or off. This ability to individually control each

segment and the layout in which these segments are

distributed allows for the representation of the

numerals and some characters. If the anode ends of

all LEDs are connected together, it is called common

anode display. If the cathodes of all LEDs are

connected together, it is called a common cathode

display. To switch a LED on in a common cathode

configuration, you have to send logic high to the

segment pin. Conversely, to switch a LED on in a

common anode configuration, you have to send logic

low to the segment pin.

Figure 12 - A Single Unit 7-Segment Display

Seven-Segment displays can be purchased in single

units encompassing one, two, three or even four

displays in the same package. Digit Multiplexing

techniques are widely used to allow for the multiple

displays to share the same segment pins

simultaneously while each displaying a different

numeral or character. Figure 12 shows a typical

single unit seven segment display while Figure 13

shows the typical layout of segment pins for the

common cathode and common anode configurations.

Interfacing a Seven-Segment display is independent

of the type of the module, whether it is common

anode or common cathode, only the logic level sent

to the display differs. Finally, since the display is

basically LEDs, current limiting resistors are used

for each segment.

7. SWITCHES AND PUSH BUTTONS

Switches and pushbuttons have similar operation, to

switch the input level between two alternating levels,

the only difference is that a push buttons only retains

 G F * A B

 E D * C DP

Figure 13 - Seven-Segment Display

*Means Vcc for common Anode, and GND

for common Cathode

6

the level as long as it is pressed and reverts back to

its prior state once the press effect is gone.

7.1. Switches

A switch is an electrical component which can break

an electrical circuit, interrupting the current or

diverting it from one conductor to another. There are

four types of switches:

 SPST Single Pole, Single Throw: SPST is

simple on-off switch. This type is simply

used for turning something on and off

 SPDT Single pole, double throw: SPDT

switches are useful if you want to supply

some instrument with two different voltages

or divert current between two different

paths.

 DPST Double pole, single throw: A Double-

pole Single-throw switch is simply two

SPST switches together. It allows you to

switch two separate circuits on and off at

once.

 DPDT Double pole, double throw: DPDT

switches have six terminals and allow one to

switch poles between two different circuits.

Figure 14 below shows typical SPDT switch.

Figure 14 - SPDT Switches

Switches use pull-up or pull down resistors to hold

the input voltage supplied to the PIC at a

predetermined level, only when the switch is used

does the voltage level change. Figure 15 shows the

circuit diagram of interfacing an SPST switch to

PIC. Note that the pull up or pull down resistors take

a minimum of 4.7kΩ, you can determine the exact

value using Ohm‟s Law.

Figure 15 - Interfacing an SPST Switch – Same circuit

is used to interface a push button.

7.2. Push Buttons

There are two types of push buttons:

 Normally closed push button (abbreviated

NC) is one that normally gives logic one and

when pressed gives logic zero.

 Normally open push button (abbreviated

NO) is one that normally gives logic zero

and when pressed gives logic one.

Push buttons are interfaced in the exact same way as

an SPST switch shown in Figure 15. Figure 16

shows a push button.

Figure 16 - A Push Button

7.3. Mechanical Switch De-bouncing
Push-buttons and switches are often used to provide

input to digital systems. However, mechanical

switches do not open or close cleanly. When a

switch is pressed it makes and breaks contacts

several times before settling into its final position.

This causes several transitions or "bounces" to

occur. To correct this situation a de-bounce circuit

is connected to the switches, thus removing the

7

series of pulses generated by the mechanical action

of the switch. Figure 17 shows a circuit which

suffers from bouncing effects.

Figure 17 - A Circuit Suffering from Mechanical

Bouncing Problem

Figure 18 shows an oscilloscope captured image

clearly showing the bouncing effect.

Figure 18 - Bouncing Effect. Note that it

approximately lasts for 150 us

Solutions

There are two solutions to the bouncing problem:

hardware and software approaches.

Hardware de-bouncing: The most basic circuit

used to de-bounce a switch is shown in Figure 19. It

consists of a resistor and a capacitor in series. The

resistor and capacitor values must be chosen such

that the RC time constant is greater than the bounce

time. The output is then connected to a Schmitt

trigger. At the start of operation the capacitor is

charged to Vcc and the output is at 5 volts, when the

switch is closed, the capacitor starts discharging

smoothly and this filters out the bounces. The

Schmitt trigger is a comparator which gives a high

output if the input value is over a certain threshold,

and a low output if below. In this case, the Schmitt

trigger is necessary because the smoothed out value

from the capacitor is neither high nor low but an

exponential signal which digital devices don‟t

understand, therefore it is up to the Schmitt trigger

to convert it to logic highs and lows.

Figure 19 - A Hardware De-Bouncing Solution

Software de-bouncing: The basic idea is to read the

switch input signal after some time interval

guaranteed to be larger than the duration which the

bouncing lasts and thus skip any short-lived

bounces. In. Figure 18, one can read the signal after

200 μs.

Which is better: Software or Hardware de-

bouncing?
It depends on your application needs; if time is

critical and speed is important, you need not waste

cycles in generating delays and therefore hardware

solutions are preferable. If, however, you are

developing a simple small-scale project where you

want to reduce the hardware costs, then the software

approach is better. All in all, you need to

compromise and choose depending on your

application and development needs

1

Introduction to Proteus
 Prepeared by Eng.Enas Jaara

The PROTEUS Environment:

Proteus PIC Bundle is the complete solution for developing, testing and virtually prototyping your

embedded system designs based around the Microchip Technologies TM series of microcontroller. This

software allows you to perform schematic capture and to simulate the circuits you design.

A demonstration on the use of PROTEUS will be given to you on this lab session, after that; you are
encouraged to learn to use the software interactively.

Overview

Window

Animation panel Object Selector

Editing Window

Status bar

Figure 1. A screen shot of the Proteus IDE

Proteus How to Start

Drawing the Circuit

Start a fresh design, select New Design

from File menu then the Create New

Design dialogue now appears as shown

in Figure 2 and 3. Select Default and

press OK.

Figure 2

2

Figure 3

From the Library menu select Pick Device/Symbol see Figure 4 or Left click on the letter ‘P’ above the

Object Selector as shown in Figure 5 to launch the Library Browser or Press the 'P' button on the

keyboard. The Library Browser will now appear over the Editing Window see Figure 6.

Figure 4

3

Pick device

Figure 5

Figure 6 Library Browser

Type ' PIC16F877A ' in the Key words field and double click on the result to place

 the PIC16F877A into the Object Selector.

4

Type ' PIC16F877A ' in the Key words field and double click on the result to place the PIC16F877A in to

the Object Selector. Do the same for the LEDs, Buttons, Crystal oscillator, capacitors, 7 SEG-COM-

Cathode, Resistors.

Once you have selected all components into the design close the Library Browser and left click once on

any component in the Object Selector

(This should highlight your selection and a preview of the component will appear in the Overview

Window at the top right of the screen see Figure 7). Now left click on the Editing Window to place the

component on the schematic - repeat the process to all components on the schematic.

Preview of the

component

Figure 7

When you click left on any

component in the Object

Selector, a preview of the

component will appear in

the Overview Window

In order to place ground

or 5 voltage right click on

the Editing Window

, select place then

terminal then select

ground (0 V) or power

(5 V).

Connect the components

to obtain the circuit you

need.

Figure 8

5

Attaching the HEX File

The next stage is to attach the HEX file to our design in order to successfully simulate the design. We do

this through the following steps.

It is necessary to specify which file the processor is to run. In our example this will be

filename.hex (the hex file produced from MPASM subsequent to assembling filename.asm).

To attach this file to the processor, right click on the schematic part for the PIC and then left click on the

part. This will bring up the Edit Component dialogue form which contains a field for Program File. If it is

not already specified as filename.hex either enter the path to the file manually or browse to the location

of the file via the button to the right of the field. Once you have specified the hex file to be run press

ok to exit the dialogue form.

We have now attached the source file to the design .

Figure 9

Debugging the Program (Simulating the Circuit)

In order to simulate the circuit point the mouse over the Play Button on the animation panel at the

bottom right of the screen see Figure 10 and click left. The status bar should appear with the time that the

animation has been active for.

6

Figure 10: The Filling Machine Circuit

